8,491 research outputs found

    Seeding systems for use with a laser velocimeter in large scale wind tunnels

    Get PDF
    Three seeding systems have been used in the 4- by 7- Meter Tunnel at NASA Langley Research Center: Kerosene smoke, solid particle dry dispersing, and solid particle liquid dispersing. It is anticipated that the liquid dispersing system will be used in all future applications at this facility because: (1) it has a steady output; (2) it is easy to operate and reconfigure; and, (3) it delivers particles of near uniform size

    A guideline for heavy ion radiation testing for Single Event Upset (SEU)

    Get PDF
    A guideline for heavy ion radiation testing for single event upset was prepared to assist new experimenters in preparing and directing tests. How to estimate parts vulnerability and select an irradiation facility is described. A broad brush description of JPL equipment is given, certain necessary pre-test procedures are outlined and the roles and testing guidelines for on-site test personnel are indicated. Detailed descriptions of equipment needed to interface with JPL test crew and equipment are not provided, nor does it meet the more generalized and broader requirements of a MIL-STD document. A detailed equipment description is available upon request, and a MIL-STD document is in the early stages of preparation

    Independent particle descriptions of tunneling from a many-body perspective

    Full text link
    Currents across thin insulators are commonly taken as single electrons moving across classically forbidden regions; this independent particle picture is well-known to describe most tunneling phenomena. Examining quantum transport from a different perspective, i.e., by explicit treatment of electron-electron interactions, we evaluate different single particle approximations with specific application to tunneling in metal-molecule-metal junctions. We find maximizing the overlap of a Slater determinant composed of single particle states to the many-body current-carrying state is more important than energy minimization for defining single particle approximations in a system with open boundary conditions. Thus the most suitable single particle effective potential is not one commonly in use by electronic structure methods, such as the Hartree-Fock or Kohn-Sham approximations.Comment: 4+ pages, 4 figures; accepted to Phys. Rev. B Rapid Communication

    Regional agriculture surveys using ERTS-1 data

    Get PDF
    The Center for Remote Sensing Research has conducted studies designed to evaluate the potential application of ERTS data in performing agricultural inventories, and to develop efficient methods of data handling and analysis useful in the operational context for performing large area surveys. This work has resulted in the development of an integrated system utilizing both human and computer analysis of ground, aerial, and space imagery, which has been shown to be very efficient for regional crop acreage inventories. The technique involves: (1) the delineation of ERTS images into relatively homogeneous strata by human interpreters, (2) the point-by-point classification of the area within each strata on the basis of crop type using a human/machine interactive digital image processing system; and (3) a multistage sampling procedure for the collection of supporting aerial and ground data used in the adjustment and verification of the classification results

    Wind Tunnel Seeding Systems for Laser Velocimeters

    Get PDF
    The principal motivating factor for convening the Workshop on the Development and Application of Wind Tunnel Seeding Systems for Laser Velocimeters is the necessity to achieve efficient operation and, most importantly, to insure accurate measurements with velocimeter techniques. The ultimate accuracy of particle scattering based laser velocimeter measurements of wind tunnel flow fields depends on the ability of the scattering particle to faithfully track the local flow field in which it is embedded. A complex relationship exists between the particle motion and the local flow field. This relationship is dependent on particle size, size distribution, shape, and density. To quantify the accuracy of the velocimeter measurements of the flow field, the researcher has to know the scattering particle characteristics. In order to obtain optimum velocimeter measurements, the researcher is striving to achieve control of the particle characteristics and to verify those characteristics at the measurement point. Additionally, the researcher is attempting to achieve maximum measurement efficiency through control of particle concentration and location in the flow field

    Risk Assessment Matrices for Workplace Hazards: Design for Usability

    Get PDF
    In occupational safety and health (OSH), the process of assessing risks of identified hazards considers both the (i) foreseeable events and exposures that can cause harm and (ii) the likelihood or probability of occurrence. To account for both, a table format known as a risk assessment matrix uses rows and columns for ordered categories of the foreseeable severity of harm and likelihood/ probability of that occurrence. The cells within the table indicate level of risk. Each category has a text description separate from the matrix as well as a word or phrase heading each row and column. Ideally, these header terms will help the risk assessment team distinguish among the categories. A previous project provided recommended sets of header terms for common matrices based on findings from a survey of undergraduate OSH students. This paper provides background on risk assessment matrices, discusses usability issues, and presents findings from a survey of people with OSH-related experience. The aim of the survey was to confirm or improve the prior recommended sets of terms. The prior recommendations for severity, likelihood, and extent of exposure were confirmed with minor modifications. Improvements in the probability terms were recommended

    Duality between quantum symmetric algebras

    Full text link
    Using certain pairings of couples, we obtain a large class of two-sided non-degenerated graded Hopf pairings for quantum symmetric algebras.Comment: 15 pages. Letters in Math. Phy., to appear soo

    Studying the Pulsation of Mira Variables in the Ultraviolet

    Get PDF
    We present results from an empirical study of the Mg II h & k emission lines of selected Mira variable stars, using spectra from the International Ultraviolet Explorer (IUE). The stars all exhibit similar Mg II behavior during the course of their pulsation cycles. The Mg II flux always peaks after optical maximum near pulsation phase 0.2-0.5, although the Mg II flux can vary greatly from one cycle to the next. The lines are highly blueshifted, with the magnitude of the blueshift decreasing with phase. The widths of the Mg II lines are also phase-dependent, decreasing from about 70 km/s to 40 km/s between phase 0.2 and 0.6. We also study other UV emission lines apparent in the IUE spectra, most of them Fe II lines. These lines are much narrower and not nearly as blueshifted as the Mg II lines. They exhibit the same phase-dependent flux behavior as Mg II, but they do not show similar velocity or width variations.Comment: 26 pages, 12 figures; AASTEX v5.0 plus EPSF extensions in mkfig.sty; to appear in Ap

    Dynamics of the hysteretic voltage-induced torsional strain in tantalum trisulfide

    Full text link
    We have studied how the hysteretic voltage-induced torsional strain, associated with charge-density-wave depinning, in orthorhombic tantalum trisulfide depends on square-wave and triangle-wave voltages of different frequencies and amplitudes. The strains are measured by placing the sample, with a wire glued to the center as a transducer, in a radio frequency cavity and measuring the modulated response of the cavity. From the triangle waves, we map out the time dependence of the hysteresis loops, and find that the hysteresis loops broaden for waves with periods less than 30 seconds. The square-wave response shows that the dynamic response to positive and negative voltages can be quite different. The overall frequency dependence is relaxational, but with multiple relaxation times which typically decrease with increasing voltage. The detailed dynamic response is very sample dependent, suggesting that it depends in detail on interactions of the CDW with sample defects.Comment: 13 pages, 6 figures, to be published in Journal of Physics: Cond. Mat
    corecore