5,970 research outputs found

    Real-world Quantum Sensors: Evaluating Resources for Precision Measurement

    Full text link
    Quantum physics holds the promise of enabling certain tasks with better performance than possible when only classical resources are employed. The quantum phenomena present in many experiments signify nonclassical behavior, but do not always imply superior performance. Quantifying the enhancement achieved from quantum behavior requires careful analysis of the resources involved. We analyze the specific case of parameter estimation using an optical interferometer, where increased precision can be achieved using quantum probe states. Common performance measures are examined and it is shown that some overestimate the improvement. For the simplest experimental case we compare the different measures and show this overestimate explicitly. We give the preferred analysis of real-world experiments and calculate benchmark values for experimental parameters necessary to realize a precision enhancement.Comment: 8 pages, 3 figure

    TOWARD THE EFFICIENT PRODUCTION OF THE DISCOMMODITY OF ANIMAL ODOR: A HEDONIC PRICE APPROACH TO ECONOMIES OF SCALE

    Get PDF
    Controversy surrounding confined animal feeding operations (CAFO) is becoming more commonplace. In several regions of the country CAFOs and local residents have had disputes over odors emanating from these operations. Viewing the CAFO as jointly producing products with utility (e.g., meat) and disutility (e.g., foul odor), it is possible to determine an efficient level of production for both products that is market-based. The authors propose a hedonic price model based upon real-estate transactions adjacent to CAFOs to establish a market-based estimate of the degree and extent of odor disutility. Using the results of the hedonic model, the authors suggest that a simple model of odor dispersal can be used to address the issue of economies of scale and the production of the disutility odor. Specifically, the final outcome should reveal if there is more or less disutility produced with an industry that is intensively or extensively managed.Livestock Production/Industries,

    Induced pluripotent stem cell-based therapy for age-related macular degeneration

    Get PDF
    Introduction: In age-related macular degeneration (AMD), stem cells could possibly replace or regenerate disrupted pathologic retinal pigment epithelium (RPE), and produce supportive growth factors and cytokines such as brain-derived neurotrophic factor. Induced pluripotent stem cells (iPSCs)-derived RPE was first subretinally transplanted in a neovascular AMD patient in 2014. Areas covered: Induced PSCs are derived from the introduction of transcription factors to adult cells under specific cell culture conditions, followed by differentiation into RPE cells. Induced PSC-derived RPE cells exhibit ion transport, membrane potential, polarized VEGF secretion and gene expression that is similar to native RPE. Despite having similar in vitro function, morphology, immunostaining and microscopic analysis, it remains to be seen if iPSC-derived RPE can replicate the myriad of in vivo functions, including immunomodulatory effects, of native RPE cells. Historically, adjuvant RPE transplantation during CNV resections were technically difficult and complicated by immune rejection. Autologous iPSCs are hypothesized to reduce the risk of immune rejection, but their production is time-consuming and expensive. Alternatively, allogenic transplantation using human leukocyte antigen (HLA)-matched iPSCs, similar to HLA-matched organ transplantation, is currently being investigated. Expert opinion: Challenges to successful transplantation with iPSCs include surgical technique, a pathologic subretinal microenvironment, possible immune rejection, and complications of immunosuppression

    5-kWe Free-piston Stirling Engine Convertor

    Get PDF
    The high reliability, long life, and efficient operation of Free-Piston Stirling Engines (FPSEs) make them an attractive power system to meet future space power requirements with less mass, better efficiency, and less total heat exchanger area than other power convertor options. FPSEs are also flexible in configuration as they can be coupled with many potential heat sources and various heat input systems, heat rejection systems, and power management and distribution systems. Development of a 5-kWe Stirling Convertor Assembly (SCA) is underway to demonstrate the viability of an FPSE for space power. The design is a scaled-down version of the successful 12.5-kWe Component Test Power Converter (CTPC) developed under NAS3-25463. The ultimate efficiency target is 25% overall convertor efficiency (electrical power out over heat in). For the single cylinder prototype now in development, cost and time constraints required use of economical and readily available materials (steel versus beryllium) and components (a commercially available linear alternator) and thus lower efficiency. The working gas is helium at 150 bar mean pressure. The design consists of a displacer suspended on internally pumped gas bearings and a power piston/alternator supported on flexures. Non-contacting clearance seals are used between internal volumes. Heat to and from the prototype convertor is done via pumped liquid loops passing through shell and tube heat exchangers. The preliminary and detail designs of the convertor, controller, and support systems (heating loop, cooling loop, and helium supply system) are complete and all hardware is on order. Assembly and test of the prototype at Foster- Miller is planned for early 2008, when work will focus on characterizing convertor dynamics and steady-state operation to determine maximum power output and system efficiency. The device will then be delivered to Auburn University where assessments will include start-up and shutdown characterization and transient response to temperature and load variations. Future activities may include testing at NASA GRC

    Black hole masses of tidal disruption event host galaxies

    Get PDF
    The mass of the central black hole in a galaxy that hosted a tidal disruption event (TDE) is an important parameter in understanding its energetics and dynamics. We present the first homogeneously measured black hole masses of a complete sample of 12 optically/UV selected TDE host galaxies (down to ghostg_{host}\leq22 mag and zz=0.37) in the Northern sky. The mass estimates are based on velocity dispersion measurements, performed on late time optical spectroscopic observations. We find black hole masses in the range 3×\times105^5 M_{\odot}\leqMBH_{\rm BH}\leq2×\times107^7 M_{\odot}. The TDE host galaxy sample is dominated by low mass black holes (\sim106^6 M_{\odot}), as expected from theoretical predictions. The blackbody peak luminosity of TDEs with MBH_{\rm BH}\leq107.1^{7.1} M_{\odot} is consistent with the Eddington limit of the SMBH, whereas the two TDEs with MBH_{\rm BH}\geq107.1^{7.1} M_{\odot} have peak luminosities below their SMBH Eddington luminosity, in line with the theoretical expectation that the fallback rate for MBH_{\rm BH}\geq107.1^{7.1} M_{\odot} is sub-Eddington. In addition, our observations suggest that TDEs around lower mass black holes evolve faster. These findings corroborate the standard TDE picture in 106^6 M_{\odot} black holes. Our results imply an increased tension between observational and theoretical TDE rates. By comparing the blackbody emission radius with theoretical predictions, we conclude that the optical/UV emission is produced in a region consistent with the stream self-intersection radius of shallow encounters, ruling out a compact accretion disk as the direct origin of the blackbody radiation at peak brightness.Comment: 16 pages, 9 figures. Submitted to MNRAS; including minor revisions suggested by the refere

    Automation of the supplier role in the GB power system using blockchain based smart contracts

    Get PDF
    An electricity supply smart contract was developed and demonstrated to perform pre-time-of-use price negotiation between demand and generation and posttime- of-use settlement and payment. The smart contract was demonstrated with 1000 loads/generators with usages simulated using lognormal probability distributions. It combines payment of deposit, negotiation of price based on estimates, settlement based on actual usage and enactment of payments using crypto-currency. The settlement procedure rewards customers that adjusted to balance the system. The smart contract was written in the Solidity programming language and implemented with a simulated Ethereum blockchain using testrpc and go-ethereum. In the example test case, a price was agreed, settled and payment enacted

    Gene Therapy for Inherited Retinal and Optic Nerve Degenerations

    Get PDF
    Introduction: The eye is a target for investigational gene therapy due to the monogenic nature of many inherited retinal and optic nerve degenerations (IRD), its accessibility, tight blood-ocular barrier, the ability to non-invasively monitor for functional and anatomic outcomes, as well as its relative immune privileged state.Vectors currently used in IRD clinical trials include adeno-associated virus (AAV), small single-stranded DNA viruses, and lentivirus, RNA viruses of the retrovirus family. Both can transduce non-dividing cells, but AAV are non-integrating, while lentivirus integrate into the host cell genome, and have a larger transgene capacity. Areas covered: This review covers Leber’s congenital amaurosis, choroideremia, retinitis pigmentosa, Usher syndrome, Stargardt disease, Leber’s hereditary optic neuropathy, Achromatopsia, and X-linked retinoschisis. Expert opinion: Despite great potential, gene therapy for IRD raises many questions, including the potential for less invasive intravitreal versus subretinal delivery, efficacy, safety, and longevity of response, as well as acceptance of novel study endpoints by regulatory bodies, patients, clinicians, and payers. Also, ultimate adoption of gene therapy for IRD will require widespread genetic screening to identify and diagnose patients based on genotype instead of phenotype

    The influence of dose distribution on treatment outcome in the SCOPE 1 oesophageal cancer trial

    Get PDF
    Purpose The first aim of this study was to assess plan quality using a conformity index (CI) and analyse its influence on patient outcome. The second aim was to identify whether clinical and technological factors including planning treatment volume (PTV) volume and treatment delivery method could be related to the CI value. Methods and materials By extending the original concept of the mean distance to conformity (MDC) index, the OverMDC and UnderMDC of the 95 % isodose line (50Gy prescribed dose) to the PTV was calculated for 97 patients from the UK SCOPE 1 trial (ISCRT47718479). Data preparation was carried out in CERR, with Kaplan-Meier and multivariate analysis undertaken in EUCLID and further tests in Microsoft Excel and IBM’s SPSS. Results A statistically significant breakpoint in the overall survival data, independent of cetuximab, was found with OverMDC (4.4 mm, p < 0.05). This was not the case with UnderMDC. There was a statistically significant difference in PTV volume either side of the OverMDC breakpoint (Mann Whitney p < 0.001) and in OverMDC value dependent on the treatment delivery method (mean IMRT = 2.1 mm, mean 3D-CRT = 4.1 mm Mann Whitney p < 0.001). Re-planning the worst performing patients according to OverMDC from 3D-CRT to VMAT resulted in a mean reduction in OverMDC of 2.8 mm (1.6–4.0 mm). OverMDC was not significant in multivariate analysis that included age, sex, staging, tumour type, and position. Conclusion Although not significant when included in multivariate analysis, we have shown in univariate analysis that a patient’s OverMDC is correlated with overall survival. OverMDC is strongly related to IMRT and to a lesser extent with PTV volume. We recommend that VMAT planning should be used for oesophageal planning when available and that attention should be paid to the conformity of the 95 % to the PTV

    The acute and chronic effects of intravitreal anti-vascular endothelial growth factor injections on intraocular pressure: A review

    Get PDF
    The acute and chronic effects of repeated intravitreal antivascular endothelial growth factor (VEGF) injections on intraocular pressure have not been fully characterized, and the development of sustained ocular hypertension could adversely affect patients who are at risk of glaucomatous optic neuropathy. As expected, volume-driven, acute ocular hypertension immediately follows intravitreal injection, but this pressure elevation is generally transient and well tolerated. Several medications have been investigated to limit acute ocular hypertension following anti-VEGF therapy, but the benefits of pretreatment are not conclusive. Chronic, sustained ocular hypertension, distinct from the short-term acute ocular hypertension after each injection, has also been associated with repeated intravitreal anti-VEGF injections. Risk factors for chronic ocular hypertension include the total number of injections, a greater frequency of injection, and preexisting glaucoma. Proposed mechanisms for chronic ocular hypertension include microparticle obstruction, toxic or inflammatory effects on trabecular meshwork, as well as alterations in outflow facility by anti-VEGF agents. Although limiting anti-VEGF therapy could minimize the risk of both acute and chronic ocular hypertension, foregoing anti-VEGF therapy risks progression of various macular diseases with resulting permanent central vision loss. While definitive evidence of damage to the retinal nerve fiber layer is lacking, patients receiving repeated injections should be monitored for ocular hypertension and patients in whom sustained ocular hypertension subsequently developed should be periodically monitored for glaucomatous changes with optic nerve optical coherence tomography and static visual fields

    PCNA Ubiquitination Is Important, But Not Essential for Translesion DNA Synthesis in Mammalian Cells

    Get PDF
    Translesion DNA synthesis (TLS) is a DNA damage tolerance mechanism in which specialized low-fidelity DNA polymerases bypass replication-blocking lesions, and it is usually associated with mutagenesis. In Saccharomyces cerevisiae a key event in TLS is the monoubiquitination of PCNA, which enables recruitment of the specialized polymerases to the damaged site through their ubiquitin-binding domain. In mammals, however, there is a debate on the requirement for ubiquitinated PCNA (PCNA-Ub) in TLS. We show that UV-induced Rpa foci, indicative of single-stranded DNA (ssDNA) regions caused by UV, accumulate faster and disappear more slowly in Pcna(K164R/K164R) cells, which are resistant to PCNA ubiquitination, compared to Pcna(+/+) cells, consistent with a TLS defect. Direct analysis of TLS in these cells, using gapped plasmids with site-specific lesions, showed that TLS is strongly reduced across UV lesions and the cisplatin-induced intrastrand GG crosslink. A similar effect was obtained in cells lacking Rad18, the E3 ubiquitin ligase which monoubiquitinates PCNA. Consistently, cells lacking Usp1, the enzyme that de-ubiquitinates PCNA exhibited increased TLS across a UV lesion and the cisplatin adduct. In contrast, cells lacking the Rad5-homologs Shprh and Hltf, which polyubiquitinate PCNA, exhibited normal TLS. Knocking down the expression of the TLS genes Rev3L, PolH, or Rev1 in Pcna(K164R/K164R) mouse embryo fibroblasts caused each an increased sensitivity to UV radiation, indicating the existence of TLS pathways that are independent of PCNA-Ub. Taken together these results indicate that PCNA-Ub is required for maximal TLS. However, TLS polymerases can be recruited to damaged DNA also in the absence of PCNA-Ub, and perform TLS, albeit at a significantly lower efficiency and altered mutagenic specificity
    corecore