47 research outputs found

    Optimal development of doubly curved surfaces,

    Get PDF
    Abstract This paper presents algorithms for optimal development (flattening) of a smooth continuous curved surface embedded in three-dimensional space into a planar shape. The development process is modeled by in-plane strain (stretching) from the curved surface to its planar development. The distribution of the appropriate minimum strain field is obtained by solving a constrained nonlinear programming problem. Based on the strain distribution and the coefficients of the first fundamental form of the curved surface, another unconstrained nonlinear programming problem is solved to obtain the optimal developed planar shape. The convergence and complexity properties of our algorithms are analyzed theoretically and numerically. Examples show the effectiveness of the algorithms

    Tracking random finite objects using 3D-LIDAR in marine environments

    Get PDF
    This paper presents a random finite set theoretic formulation for multi-object tracking as perceived by a 3D-LIDAR in a dynamic environment. It is mainly concerned with the joint detection and estimation of the unknown and time varying number of objects present in the environment and the dynamic state of these objects, given a set of measurements. This problem is particularly challenging in cluttered dynamic environments such as in urban settings or marine environments, because, given a measurement set, there is absolutely no knowledge of which object generated which measurement, and the detected measurements are indistinguishable from false alarms. The proposed approach to multi-object tracking is based on the rigorous theory of finite set statistics (FISST). The optimal Bayesian multi-object tracking is not yet practical due to its computational complexity. However, a practical alternative to the optimal filter is the probability hypothesis density (PHD) filter, that propagates the first order statistical moment of the full multi-object posterior distribution. In contrast to classical approaches, this random finite set framework does not require any explicit data associations. In this paper, a Gaussian mixture approximation of the PHD filter is applied to track variable number of objects from 3D-LIDAR measurements by estimating both the number of objects and their respective locations in each scan. Experimental results obtained in marine environments demonstrate the efficacy and tracking performance of the proposed approach.MIT-Singapore Allianc

    Experiments on Surface Reconstruction for Partially Submerged Marine Structures

    Get PDF
    Over the past 10 years, significant scientific effort has been dedicated to the problem of three-dimensional (3-D) surface reconstruction for structural systems. However, the critical area of marine structures remains insufficiently studied. The research presented here focuses on the problem of 3-D surface reconstruction in the marine environment. This paper summarizes our hardware, software, and experimental contributions on surface reconstruction over the past few years (2008–2011). We propose the use of off-the-shelf sensors and a robotic platform to scan marine structures both above and below the waterline, and we develop a method and software system that uses the Ball Pivoting Algorithm (BPA) and the Poisson reconstruction algorithm to reconstruct 3-D surface models of marine structures from the scanned data. We have tested our hardware and software systems extensively in Singapore waters, including operating in rough waters, where water currents are around 1–2 m/s. We present results on construction of various 3-D models of marine structures, including slowly moving structures such as floating platforms, moving boats, and stationary jetties. Furthermore, the proposed surface reconstruction algorithm makes no use of any navigation sensor such as GPS, a Doppler velocity log, or an inertial navigation system.Singapore-MIT Alliance for Research and Technology. Center for Environmental Sensing and Modelin

    Infrastructure for 3D model reconstruction of marine structures

    Get PDF
    3D model reconstruction of marine structures, such as dams, oil-rigs, and sea caves, is both important and challenging. An important application includes structural inspection. Manual inspection of marine structures is tedious and even a small oversight can have severe consequences for the structure and the people around it. A robotic system that can construct 3D models of marine structures would hopefully reduce the chances of oversight, and hence improve the safety of marine environment. Due to the water currents and wakes, developing a robotic system to construct 3D models of marine structures is a challenge, as it is difficult for a robot to reach the desired scan configurations and take a scan of the environment while remaining stationary. This paper presents our preliminary work in developing a robotic and software system for construction of 3D models of marine structures. We have successfully tested our system in a sea water environment in the Singapore Straits

    Modeling and Inspection Applications of a Coastal Distributed Autonomous Sensor Network

    Get PDF
    Real time in-situ measurements are essential for monitoring and understanding physical and biochemical changes within ocean environments. Phenomena of interest usually display spatial and temporal dynamics that span different scales. As a result, a combination of different vehicles, sensors, and advanced control algorithms are required in oceanographic monitoring systems. In this study our group presents the design of a distributed heterogeneous autonomous sensor network that combines underwater, surface, and aerial robotic vehicles along with advanced sensor payloads, planning algorithms and learning principles to successfully operate across the scales and constraints found in coastal environments. Examples where the robotic sensor network is used to localize algal blooms and collect modeling data in the coastal regions of the island nation of Singapore and to construct 3D models of marine structures for inspection and harbor navigation are presented. The system was successfully tested in seawater environments around Singapore where the water current is around 1-2m/s. Topics: Inspection , Modeling , Sensor networks , ShorelinesSingapore. National Research Foundation (Singapore-MIT Alliance for Research and Technology (SMART)

    Multi-vehicle oceanographic feature exploration

    Get PDF
    URL to conference page. Scroll down to 2009 conference (June 21-26), click "Paper and session list," and search under Patrikalakis' name.Oceanographic features such as jets and vortices are often found downstream of obstacles and landforms such as islands or peninsulas. Such features have high spatial and temporal variability and are, hence, interesting but difficult to measure and quantify. This paper discusses an experiment to identify and resolve such oceanographic features in Selat Pauh, in the Straits of Singapore. The deployment formation for multiple robotic vehicles (Autonomous Surface Craft - ASC), the measurement instruments, and the algorithms developed in extracting oceanographic field variables are described. These were based on two ocean field predictions from well-known geophysical flow dynamic models. Field experiments were carried out and comparison of the forecasts with measurements was attempted. To investigate an unexpected behaviour of one ASC, hindcasts with wind effects and simulation with vortex feature extraction on a larger domain with more involved bathymetry were also partially carried out.Singapore-MIT Alliance for Research and TechnologySingapore. National Research Foundation (SMART/CENSAM initiative

    Three-Dimensional Object Registration Using Wavelet Features

    Get PDF
    Recent developments in shape-based modeling and data acquisition have brought three-dimensional models to the forefront of computer graphics and visualization research. New data acquisition methods are producing large numbers of models in a variety of fields. Three-dimensional registration (alignment) is key to the useful application of such models in areas from automated surface inspection to cancer detection and surgery. The algorithms developed in this research accomplish automatic registration of three-dimensional voxelized models. We employ features in a wavelet transform domain to accomplish registration. The features are extracted in a multi-resolutional format, thus delineating features at various scales for robust and rapid matching. Registration is achieved by using a voting scheme to select peaks in sets of rotation quaternions, then separately identifying translation. The method is robust to occlusion, clutter, and noise. The efficacy of the algorithm is demonstrated through examples from solid modeling and medical imaging applications

    Cooperative AUV Navigation using a Single Maneuvering Surface Craft

    Get PDF
    In this paper we describe the experimental implementation of an online algorithm for cooperative localization of submerged autonomous underwater vehicles (AUVs) supported by an autonomous surface craft. Maintaining accurate localization of an AUV is difficult because electronic signals, such as GPS, are highly attenuated by water. The usual solution to the problem is to utilize expensive navigation sensors to slow the rate of dead-reckoning divergence. We investigate an alternative approach that utilizes the position information of a surface vehicle to bound the error and uncertainty of the on-board position estimates of a low-cost AUV. This approach uses the Woods Hole Oceanographic Institution (WHOI) acoustic modem to exchange vehicle location estimates while simultaneously estimating inter-vehicle range. A study of the system observability is presented so as to motivate both the choice of filtering approach and surface vehicle path planning. The first contribution of this paper is to the presentation of an experiment in which an extended Kalman filter (EKF) implementation of the concept ran online on-board an OceanServer Iver2 AUV while supported by an autonomous surface vehicle moving adaptively. The second contribution of this paper is to provide a quantitative performance comparison of three estimators: particle filtering (PF), non-linear least-squares optimization (NLS), and the EKF for a mission using three autonomous surface craft (two operating in the AUV role). Our results indicate that the PF and NLS estimators outperform the EKF, with NLS providing the best performance.United States. Office of Naval Research (Grant N000140711102)United States. Office of Naval Research. Multidisciplinary University Research InitiativeSingapore. National Research FoundationSingapore-MIT Alliance for Research and Technology. Center for Environmental Sensing and Monitorin
    corecore