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Abstract

This paper presents algorithms for optimal development (flattening) of a smooth continuous
curved surface embedded in three-dimensional space into a planar shape. The development process
is modeled by in-plane strain (stretching) from the curved surface to its planar development. The
distribution of the appropriate minimum strain field is obtained by solving a constrained nonlinear
programming problem. Based on the strain distribution and the coefficients of the first fundamental
form of the curved surface, another unconstrained nonlinear programming problem is solved to
obtain the optimal developed planar shape. The convergence and complexity properties of our
algorithms are analyzed theoretically and numerically. Examples show the effectiveness of the
algorithms.0 2000 Elsevier Science B.V. All rights reserved.

Keywords:Optimal development; Strain field; Nonlinear programming; Line heating; Doubly
curved surfaces

1. Introduction

In engineering applications, there exist two kinds of surfaces, developable surfaces
and non-developable surfaces, which are also called singly and doubly curved surfaces,
respectively. A developable surface has zero Gaussian curvature at all points, while
a non-developable surface has non-zero Gaussian curvature at least in some region.
A developable surface is highly favorable in metal forming since it can be formed only by
bending without tearing or stretching. For this reason, developable surfaces are widely used
in manufacturing parts whose materials are not easily amenable to stretching. However,
surfaces of many engineering structures are commonly fabricated as doubly curved shapes
to fulfill functional requirements such as hydrodynamic, aesthetic, or structural. For
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example, a large portion of the shell plates of ship hulls or airplane fuselages are doubly
curved surfaces.

Given a three-dimensional design surface, which represents a face of a curved plate
or shell, the first step of the fabrication process is flattening or planar development of this
surface into a planar shape so that the manufacturer can not only determine the initial shape
of the flat plate but also estimate the strain distribution required to form the shape. Then the
planar shape is formed into an approximation of the design surface by various approaches
such as forming by matching dies, by continuous hammering, or by line heating using an
oxyacetylene torch, laser, or heat by induction. This planar shape is usually not unique
since, theoretically, a large variety of initial planar shape can be deformed into the curved
surface if adequate stretching or shrinkage is allowed. However, in real practice, a planar
development corresponding to minimum stretching or shrinkage is highly desirable for the
following reasons:

(1) it saves material;

(2) it reduces the work needed to form the planar shape to the doubly curved design

surface.

Early surface development procedures were implemented in shipyards based on geodesic
development during the last three decades, mainly for ship hull plates whose Gaussian
curvature is very small. More recently, Letcher (1993) presents a basic geometric theory
for flattening and fabrication of doubly curved plates. The mapping from the curved surface
to its planar development is modeled by adding in-plane strains to the curved surface. The
strain field is obtained by solving a generalized Poisson’s equation with the source term
equal to the Gaussian curvature. However, since the problem is formulated as a boundary
value problem, a good solution relies on a well specified boundary condition which is
hard to know beforehand. Also, the differential equation is formulated in an orthogonal
coordinate system and it is not trivial to formulate in a non-orthogonal coordinate system.
Ueda et al. (1994) investigate the relation between the final shape of a plate and the inherent
strain. They compute the strain caused by deformation from the initial configuration to the
final one using large deformation elastic FEM analysis. Since the initial configuration is
usually the projection of the doubly curved surface ontathe plane, their approach can
only be applied to the cases when the 3D surface is relatively flat, i.e., the curvature is small.

Manning (1980) developed a procedure for surface development based on an isometric
tree. A tree of lines with a spine and branches is first drawn on the curved surface. Then
the spine and the branch curves are developed isometrically onto planar curves, using
the geodesic curvature of the spine and branches on the surface as the curvature of the
planar curves. The envelope of the developed pattern forms the planar developed shape.
Obviously, the shape of the planar development depends on the choice of the spine and
branch curves, since in this development scheme, the stretching along both the spine and
branch curves is zero. This procedure is applied in the shoemaking industry and may not
be applicable in metal forming. Another disadvantage of this procedure is that it does not
provide the field of strain (deformation). Hinds et al. (1991) develop doubly curved surfaces
by first approximating them by quadrilateral facets, then flattening these platelets allowing
some gaps in the developed patterns. This method is applied in the clothing industry. The
disadvantage of this method is that the developed shape depends on the starting edge
chosen and again if used in metal forming, it is not guaranteed that the forming process is
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realizable from the planar shape to the curved surface. Azariadis and Aspragathos (1997)
extend the work by Hinds et al. (1991) to reduce the gaps by minimizing the Euclidean
distances of pairs of corresponding points between two successive strips. The quality of the
development approaches in (Hinds et al., 1991; Azariadis and Aspragathos, 1997) largely
depends on the choice of guide-strip or starting edge.

Cho et al. (1998) present an algorithm to approximately develop a doubly curved
surface by minimizing the mapping error function for locally isometric mapping between
a given and developed surface net. The method has been applied to construct an auxiliary
planar domain of triangulation for tessellating trimmed parametric surface patches, which
sufficiently preserves the shape of triangles when mapped into three-dimensional space.
Again, the applicability of Cho’s method (Cho et al., 1998) for metal forming is unclear.
The disadvantage of the available literature is that there is no general algorithm for optimal
development of general curved surfaces for metal forming process.

In this paper, we develop algorithms for optimal development of a general doubly curved
surface in the sense that the strain from the surface to its planar developmentis minimized.
A tensile strain (stretching) from the curved surface to its planar development is assumed
which corresponds to forming from the planar shape to curved surface by the line heating
approach (Scully, 1987; Yu et al., 1999). When a plate is being formed by line heating,
plastic deformation is produced by the thermal stresses generated during the heating and
subsequent cooling of the plate. During the heating process, temperature along heating
lines increases rapidly, causing the metal at the heated region to expand. In the mean
time, the expanded metal is constrained by the surrounding cooler metal, and compressive
stresses result. When the heat is removed, the plate cools and the metal contracts, resulting
in residual compressive strains inside the plate. The temperature gradient across the
thickness of the plate causes the strain gradient across the thickness, which results in the
curvature of the plate. The paper is structured as follows: Section 2 reviews differential
geometry of surfaces, as well as derives some important theorems on the derivative of
the first fundamental form coefficients of the offset surface with respect to the offset
distance. Section 3 presents the algorithms for surface development based on the strains
along isoparametric lines. Section 4 present the algorithms for surface development based
on the strains along principal curvature directions. Section 5 analyzes the complexity and
the convergence of the algorithms with respect to the number of grid points. Section 6
illustrates the performance of the surface development algorithms by means of several
examples and concluding remarks are provided in Section 7. A more detailed treatment of
the results of this paper can be found in a recent thesis by the first author (Yu, 1999).

2. Surface theory

2.1. Background on differential geometry of surfaces

A parametric surface in 3D Euclidean space is defined by (Hoschek and Lasser, 1993)
F=r(u,v), )

where the parametersandv are restricted to some intervals (i.ey, < u <u2, v1 < v <
v2) leading to parametric surface patches. This rectangular domaif u, v is called
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parametric spacend it is frequently the unit square. If derivatives of the surface are
continuous up to theth order, the surface is said to be of classlenoted””. We assume

the surface is smooth enough so that all the (partial) derivatives given in the paper are
meaningful.

2.1.1. First and second fundamental forms
Consider a curv€ on a surfaces defined byr =r (u(z), v(z)). The arc length dof the
curve on the surface is given by (do Carmo, 1976)

(ds)?2=1=dr-dr = E du® + 2Fdu dv + G dv?, 2)
where
E=r,-r,, F=ry, 1y, G=r, I, 3)

and subscripta, v denote partial derivativeg. is called the first fundamental form, and
E, F, G are called coefficients of the first fundamental form.

In order to quantify the curvatures of a surfagewe consider a curv€ on S which
passes through a poirt as shown in Fig. 1t is the unit tangent vecton is the unit
normal vector and is the curvature vector of the cur¢gat pointP.

k:%:xn:k,ﬂrkg. 4)

S

The component along the unit surface noriNa- ‘:“iﬁv‘ is the normal curvature vector
u v
k, expressed as

k,, =k, N, 5)

wherex,, is called the normal curvature of the surfacePan the directiort.
The second fundamental form is given by

Il = —dr - dN = L du? 4 2M du dv 4+ N dv?, (6)

where

Fig. 1. Definition of normal curvature.
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L:N-I‘uuz—ru-Nu, M:N'ruU:_ru'NU:_rU'NLu
N=N-ry,=—r,-N, (7)
are coefficients of the second fundamental form. The normal curvature can be expressed
by
I L+2MA+NA?
T T Ef2FAtGAZ
wherei = dv/du.

(8)

2.1.2. Gauss curvature
The extreme values af, can be obtained by evaluating,gdx = 0 of Eq. (8), which
gives after several algebraic manipulations:

k2 —2Hk, + K =0. (9)

The valuesk andH are called Gauss (Gaussian) and mean curvature respectively. They
are functions of the coefficients of the first and second fundamental forms as follows:

LN — M?
= EG—F? (10)
EN+GL—-2FM
= 11
2(EG — F?) (11)

Alternatively, the Gaussian curvatuke can be expressed as a function®fF, G and
their derivatives (Struik, 1950).

4(EG — F?’K = E(E,G, — 2F,G, + G?)
+ F(E Gy — EyGy — 2EyFy + 4E, Fy — 2F,G,)
+G(E Gy — 2E,F, + E?)
—2(EG — F?)(Eyy — 2Fuy + G ). (12)

2.2. Theorems on the gradients of the first fundamental form coefficients

In this section, some theorems are presented on the gradients of the first fundamental
form coefficients of the offset surface along the offset distance direction, which correspond
to the gradients of those coefficients across the thickness for a curved shell plate. These
theorems show that the gradients of the first fundamental form coefficients of the offset
surface provide the mechanism of surface curvature. In metal forming, this means that
the non-uniformity of the tensile or compressive strains across the thickness generates
the gradients of the first fundamental form coefficients of the offset surfaces across plate
thickness, which in turn generates curvature of the formed plate. To our knowledge, these
results are new in the CAGD area.

For a curved shell plate with thicknedswe consider (1, v) as the mid-surface if its
offset surfaces with signed distandg® and—#/2 are the upper and lower surfaces.
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Theorem 2.1. The coefficients of the second fundamental form of a parametric surface
can be expressed by the derivatives of the coefficients of the first fundamental form of its
offset surface with respect to the offset distasicevaluated at/ = 0.

Proof. Let a progenitor parametric surface (called mid-surface) be defined by (1) and the
coefficients of its first fundamental form be given in Eq. (3). Then the offset surface with
signed distancé along the normal from the mid-surface is:

f(u,v)=ru,v)+dN(u,v), (13)

whereN is the unit normal vector of the surfacéu, v) at (i, v). The first fundamental
form coefficients of the offset surface are functions pb, d:

A A A

Ezfu'fua szu'fv, szv‘fv- (14)
Their derivatives with respect td, evaluated at mid-surface, i.e., o= 0 are:

dE

dd | 4=0

dF

- =Ty -Ny+ry-Ny=-2M, (16)
dd | 4=0

G

dd |4=0

Therefore, the second fundacnegtal form coefficidntd/, N of the mid-surface can be
expressed by the derivatives Bf F, G, evaluated at the mid-surfacer

A similar result can be derived for the metrics along principal curvature directions.

Corollary 2.1. Let the parameters along maximum principal curvature and minimum
principal curvature directions be andz. Then

8(fs : fa)

3d o = —kaax(fs ) Ias)|d=0, (18)
a(f, -7 FUN
Tl otin(fe - ) oo (19)
dd =0

Proof. For the offset at distanc¢ along the normal from the mid-surface, as defined in
Eq. (13),
fs-fs= (fuus + i:vvs) : (fuuv + i’\vvs)
= Eu? + 2Fusvg + Gv2. (20)
Therefore, after taking partial derivatives of Eq. (20) with respegt emd using Eqgs. (15)—
(17), we obtain
8(fs : fa)

= —2(Lu§ + 2Mugv + Nvg). (21)
dd =0 ‘ ‘
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From Eq. (8),
L+2M)+ N2> Lu?+ 2Mugvg + Nv?
E+2F\A+ G2 Eu?+42Fugv + Gv2’
which results in

Luf + 2Musvs + Nvf = kmaX(Euf +2Fusvs + Gvf) = kmax(fs : fs) }d:O- (23)

Thus by substituting Eq. (23) into Eq. (21), we obtain Eq. (18). Similarly, along the
minimum principal curvature direction, where the parameterige obtain Eq. (19). O

(22)

Kmax =

Egs. (15)—(17), (18) and (19) play an important role in surface development algorithms,
since in engineering applications, curved plates have finite thickness, no matter how thin
they are.

3. Surface development along isoparametric directions

In this section, algorithms for surface development along isoparametric directions are
presented. The process of surface development is expressed by tensile strains along
isoparametric directions. This corresponds to forming a plate into a curved surface only by
shrinkage which can be realized by line heating process (Scully, 1987; Yu et al., 1999).

3.1. Determination of strain field

3.1.1. Formulation

We assume that the surface is defined by a parametric vector equation of the form (1).
The surface and its planar development are shown in Fig. 2. The coefficients of the first
fundamental form of the curved surface are given by Eq. (3).

Assume that during metal forming by line heating, the normal strain alotige is
€“(u, v) < 0, and the normal strain alondine ise¢”(u, v) < 0. On the contrary, the strains

2D
_development,_

Fig. 2. Curved surface and its planar development.
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u line (v=const)

v line (u=const)

Fig. 3. Strain distribution produced during surface development.

due to development from curved surface to its planar development'érev) > 0 and
e’(u,v) > 0, as shown in Fig. 3. Normal strains are a non-dimensional quantity defined
by the ratio of extension or shrinkage of a fiber and its original length. After surface
development an infinitesimal lengfh, du| changes t@1l+ ¢*)|r, du|, and an infinitesimal
length|r, dv| changes tgl+&Y)|r, dv|, according to the definition of strain. Thus we have

|Ru|:(1+5u)|ru|’ |Rv|:(1+gv)|rv|’ (24)

where R(u, v) is the planar development (see Fig. 2). The first fundamental form
coefficients of the developed surfaRéx, v) are given by

e=R,-R,, f=Ry-Ry, g=Ry-Ry. (25)
After substituting Eq. (24) and the relations
Ri-Ru=IRu?  Ru-Ry=IR[?

into Eq. (25), the coefficients of the first fundamental form of the planar developed surface
are

e=(1+&)E,  f=(1+&)(1+)F  g=(1+¢")°G. (26)

Here, in computingf, we assume the angle betwegnandr, does not change after
surface development. This is equivalent to ignoring the effect of shear strain.

We then minimize the straing (u, v) ande? (u, v) which satisfy the condition that after
adding these strains to the doubly curved surface, it maps to a planar shape on which
Gaussian curvature is zero. This minimization is done in an integral sense using the squares
of the strains. Using Eq. (12), this results into

mm// }|ru><r,,|dudv
— min / / )V WEG — F2dud, (27)

such that

0= {e(evgv - 2fugv +g3) + f(eugv —€v8u — zeva +4eufv - qugu)
+g(eu8u — 2ey fy +€5)
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—2(eg — f2)(ews — 2fuw + gu) } /Heg — £2)° (28)
e“(u,v) >0; ¢’(u,v) >0; (u,v) €D,

where D denotes the parametric domain. Since the problem is solved numerically with a
solution satisfying the constraint at a given tolerance, we keep the denominator in Eq. (28)
(i.e., 4eg — 2?) so that the tolerance of constraint has explicit meaning of Gaussian
curvature. It can be shown that minimizing the straitig:, v) ande?(u, v) is equivalent

to minimizing the magnitude of the straia%(u, v) ande”(u, v). We choose to work with

&“(u, v) ande? (u, v) since we are starting from the curved design surface.

Alternatively, we can also uge" + V) instead of{(¢*)% + (¢¥)?} in the above integral
objective function. In this case, the objective function represents the area difference
between the doubly curved surface and the planar development to the first order. We use
the quadratic objective functiof(s*)? + (¢¥)?} here instead of the linear one to make
the solution easier. After substituting Egs. (26) into the above formulae, we obtain an
optimization problem with respect t&f («, v) ande® (u, v).

This constrained minimization problem is discretized by using the finite difference
method and trapezoidal rule of integration. A grid/8f x N¢ points in the parametric
domain are used in the discretization. Therefore, the total number of variablb’§]§2,’2
To guarantee the independence of each constraint, constraints are imposed at the internal
points of the grid, so there adly —2) x (Ny —2) constraints.

After discretization, the objective function becomes

o 2 2 /
Zzaij((sglj) + (Elvj) ) E;iiG;j— Fl? Au Av, (29)
i1 j—1

where following the trapezoid rule of integration (Dahlquist and Bjorck, 1974)

aij=1 whenl<i < Ng; 1<j <Ny,
«;j =05 when l<i<Ng; j=1lorj=Nyg,
«;j =05 wheni =1ori =N£,‘; 1<j <N§, (30)

a;j =0.25 Wheni=j=00ri=N;,‘,j=N£j,
a;j =025 wheni=Ng, j=00ri=0, j=N,.

As Au, Av — 0, the error between the objective functions in (27) and (29) due to
numerical integration is @Au)?, (Av)?) as is well known (Dahlquist and Bjérck, 1974).

We use second order central difference method to approximate all the derivatives in Eq.
(28) at internal points of the grid. A&u, Av — 0, the resulting errors are of the order
(Au)? or (Av)?, or Au - Av (Dahlquist and Bjérck, 1974).

After discretization, we obtain a nonlinear optimization problem with a convex cost
function and nonlinear polynomial constraints. This nonlinear programming problem is
solved by using the Fortran NAG routine E04VDF (1990), which is designed to solve the
nonlinear programming problem—the minimization of a smooth nonlinear function subject
to a set of constraints on the variables. Although theoretically, it may be possible to have
multiple solutions for the optimization problem (27)—(28), it is very rare in practice to have
multiple solutions given the physical nature of the problem.
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3.1.2. Solution method

The minimization problem in Section 3.1.1 is a special case of the following nonlinear
programming problem (the symbols in this section follow the general practice in the
optimization literature, especially, vectors are expressed as a normal letter instead of a
bold one):

minimize ¥ (q)
. (31)
subjectto 1< |:ALq:| <u,
c(q)
whereyr(¢) is a smooth nonlinear functior,; is a constant matrix, andq) is a vector
of smooth nonlinear constraint functions. This form allows full generality in specifying
other types of constraints. In particular, tt{¢h) constraint may be defined as an equality
by settingl; = u;. If certain bounds are not present, the associated elemeriterof
can be set to special values that will be treated-as or 4+occ. In our problemy is the
vector of straingy = (e, €50 €83, €31 - - -+ €40s €300 - - )5 ¥(q) is the objective function
after discretization and is expressed in (29); the matrixis empty, and:(¢) is a vector
of (N —2)(Ng — 2) nonlinear constraints coming from discretization of Eq. (28) at
(Ng —2) x (N; — 2) internal grid points. The vectar is a zero vector, and vector
u = (+00,+00,...,+00,0,0,...,0)T, with 2N*N? infinities and (N¥ — 2)(N} — 2)
zeros.
EO04VDF is an implementation of a sequential quadratic programming (SQP) method
(Gilletal., 1981; Bertsekas, 1995). Lgf denote the initial estimate of the solution. During
thek(th) “major iteration” of EO4VDHRk =0, 1, ...), a new estimate is defined by

qk+1= gk + %k Pk,

where the vectopy is the solution of a QP subproblem, to be described below. The positive
scalaray is chosen to produce a sufficient decrease in an augmented Lagrange function;
the procedure that determingsis the line search method.
The QP subproblem that defingg is of the form
minimize g'p+ %pTHp
subjectto < [Ap ] <i,
op
where the vectog is the gradient of at ¢x; the matrix H is a positive definite quasi-
Newton approximation to the Hessian of an augmented Lagrangian function.
Letm,, denote the number of linear constraints (the number of rows iy and letm v
denote the number of nonlinear constraints (the dimensioyoj. The matrixA o in (32)
hasm; +my rows, and is defined as

(32)

where Ay is the Jacobian matrix of(¢) evaluated aty;. Let ! in (31) be partitioned
into three sections: the first component (denoted big), corresponding to the bound
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constraints; the nexin; components (denoted bj;), corresponding to the linear
constraints; and the lasty components (denoted By ), corresponding to the nonlinear
constraints. The vectdrin (32) is partitioned in the same way, and is defined as

lp=Ilp—qr. lp=I—Arq and Iy=Iy—ck,

wherecy, is c(g) evaluated ag;. The vectot: is defined in an analogous fashion.

In general, solving the QP subproblem far is itself an iterative procedure. Hence a
“minor iteration” of EO4VDF corresponds to an iteration within the QP algorithm. In our
implementation, the starting point of the minimization is that all the strains are chosen to
be zero.

3.1.3. Strain gradients

After solving for the strain distribution at the mid-surface, we can determine the ideal
gradient of the strains along the normal of the mid-surface. As mentioned in Sections 1
and 2, in metal forming, the non-uniformity of the tensile or compressive strains across the
thickness generates the gradients of the first fundamental form coefficients of the offset
surfaces across plate thickness, which in turn generates curvature of the formed plate.
Based on Eq. (26), and

F=r, ry=Ir,|ry|cost = vVEG cosh, (33)

whered is the angle between, andr,, the coefficients of the first fundamental form of
the planar developed shape of the offset surface at distafroen the mid-surface are:

e=(1+8)E,  f=(1+8)1+&)VEGcos(d + Ab),
2= (1+8")°G, (34)

whereE, F, G are the coefficients of the first fundamental form of the offset surface;
¢, f, & are the coefficients of the first fundamental form of the planar developed shape
of the offset surface is the angle between isoparametric lines: const andv = const

on the offset surfaceAd is the change of this angle after development. According to the
assumption in this sectioy® = 0 atd = 0. Ideally, after development, the 2D developed
shape of the offset surface is the same for any given offset distarihas we have

de
o, 35
2 (35)
af
o, 36
S (36)
98
— =0. 37
o (37)

After substitutinge in Eqg. (34) into Eq. (35), and after some manipulation by using Eq.
(15), we have
a[ln(1+ &")] L

_L 38
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Similarly, Eq. (37) leads to

alin(L+&? N
nd+eHl) _ N (39)
dad -0 G
After substitutingf in Eq. (34) into Eq. (36), and a detail derivation, we obtain
lin(1+ & In(1+¢v 2M d(Ab
[(IN(1+e&") +In(1+¢")] M ane (A0) . (40)
ad i—0 F ad |0
During the derivation of Eq. (40), Eq. (16) is used, as well as the relation
A6|4—0=0.
After substituting Egs. (38), (39) into Eq. (40), we obtain
a(A0 L N 2M
CACU) B cote)(— + = - —) (41)
ad |,_o E G F

The system of Egs. (38), (39) and (41) give out ideal strain gradients, and the gradient of
change of angle between isoparametric directions. In other words, if the strain gradients of
In(1+ &*) and IN1 + ¢¥) atd = 0 are equal to the ratios of the corresponding second and
first fundamental form coefficients at the mid-surface before development, and the gradient
of A atd = 0 satisfy the relation (41), the 2D developed shape of the offset surface with
small offset distance will be the same.

3.2. Determination of planar developed shape

After solving the nonlinear minimization problem, we obtain the strafhande? at all
grid points. We now determine the planar coordindf€g, ¥;;) of the grid points at the
corresponding planar development. Ideally, these coordiatgsY;;) should satisfy the
following equations at all grid points:

R, -Ru=e, Ru'szf, Rv‘szg, (42)

whereR = (X, Y), ande, f, g are obtained from Egs. (26) as functionsuchndv. After
discretization of the above Egs. (42) using finite difference method (central difference for
internal points, and forward or backward difference for boundary points), we obtain a
system of over-determined nonlinear polynomial equations. Instead of solving the system
directly, we solve the following least squares error unconstrained minimization problem
Ng Ng
miny "> Ry - Rulij — €ij)* + Ry - Rolij — fi)* + Ry - Rylij — gip)>. (43)
i=1j=1
This optimization problem can be solved by using the quasi-Newton method (Bertsekas,
1995) for finding an unconstrained minimization of a sum-of-square®phonlinear
functions inM> variables (11 > M>). This can be done by using the NAG Fortran library
routine EO4GBF (1990). In the implementation, rigid body motion of the developed planar
shape is prohibited by forcing the coordinates of the grid points:

(Xij, Yij)li=0,j=0)=(0,0) and X;;|i=o,j=1 =0.
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The starting points of the minimization are given by

X ¥ = (. j=1,...,N!; j=1,...,N}

( l’j) lJ)_ Wym ﬂ (l_ DRI g’ J_ DRI g)9

4 4
whereg is a scalar factor.
For the special case when the given surface is a developable surface, the first

optimization problem (27)—(28) is solved with the solutigf(u, v) = ¢¥(u, v) = 0, and
only the second optimization needs to be solved, which is equivalent to development of a
developable surface.

3.3. Inverse problem

In order to estimate the accuracy of this surface development algorithm, we solve an
inverse problem. After determining the planar developed shape, we can compyfie,
gij atall grid points based on the planar coordinafég,(¥;;) using the discrete version
of Egs. (42). We then evaluatg;;, F;;, G;; based on the;;, fi;, gi; and the strains
&5, €/; by using Eq. (26). Under the condition of ideal strain gradients (38) and (39)
and the change of angles between isoparametric directions (41), the second fundamental
form coefficients at grid point&;;, M;;, N;; are recovered. In other words, we store
ANQALEDN ) o, ML), _o and X201, _, at the developed grid points({;, ¥;;), and
recover the second fundamental form coefficieiis M;;, N;; by solving forL, M, N
in Egs. (38), (39) and (41). In Eq. (41), we use theomputed from the 3D surface to
avoid the extra error due to approximating it from the 2D shape. Alternatively, we can
computed in Eq. (41) from the 2D developed shape. This involves first fitting by splines
the isoparametric lines in 2D developed shape based on the coordiXaiek; (), then
computingd. Since the inverse problem is an auxiliary problem, we usedtbemputed
from the 3D surface.

After obtaining the coefficients of the first and second fundamental forms, we solve a
reverse problem to obtam; = (x;;, yi;, zij) using the least squares error minimization as
follows:

Nll NU
MinY > (- Tulij = Ei)? + (- Tolij — Fi)? + (0 - Tolij — Gij)?
i=1j=1

2
+ (ruu “(ry x rv)|ij - Ll'j\/ EijGij - E?)

2
+ (Fuv - (ru x r)lij — Mij / EijGij — F-j)

1l

2
+ (Fow - (ru x T)lij = Nijy/ EijGij — F5)". (44)

Suitable constraints can be imposed to get rid of rigid body motion. The solution method
of problem (44) is the same as that of problem (43), except there are more variables here.
The error of this surface development process can be measured by the distance between
the grid points on the reconstructed surface and those on the original surface.
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4. Surface development along principal curvature directions

In Section 3, surface development is expressed by tensile strains along the isoparametric
lines. The assumption made is that the angle between isoparametric directions remains
unchanged after a doubly curved surface is developed into a two-dimensional shape. This
assumption is reasonable when the angle between isoparametric directions is large and the
strains are small. In the case when the angle betwgandr, is small at some area of the
surface, this assumption may cause errors which can not be ignored.

In this section, algorithms for surface development based on strains along principal
curvature directions are presented. Since the principal curvature directions are independent
of the parametrization of surfaces and are unique except at umbilic points, this surface
development is more general. Also, since the angle between two principal curvature
directions is a right angle, the assumption that this angle does not change significantly
after development is more reasonable.

4.1. Determination of strain field

4.1.1. Formulation

We assume that the surface is defined by the parametric vector equation (1). The
surface and its planar development are shown in Fig. 2. The coefficients of the first
fundamental form of the curved surface are given by Eq. (3). We further assume that
during the surface development process, the strains due to development from curved
surface to its planar development aféu, v) > 0 ands’ (u, v) > 0, along the maximum
and minimum principal curvature directions, respectively. Therefore an infinitesimal
length |ry ds| changes tal + £*)|ryds|, and an infinitesimal lengtlr, dz| changes to
(1+ &)|r, dt], according to the definition of strain. Thus we have

IRs| = (1+&")Irs, IRe| = (14¢&)Irel, (45)

whereR(u, v) is the planar developmerR(u, v) can also be considered as a parametric
surface with its first fundamental form coefficients defined by Eq. (25). Since

Rs - Ry = (Ryus + Ryvy) - (Ryus + Ryvg) = euf + 2fugvg + gvx2 (46)
and

Mg Tsg=(rulty +Tyv5) - (Fuug +ryvs) = Eué2 + 2Fugvs + Gvsz, 47
using the relations in Egs. (45), (46) and (47), we obtain

euf + 2fugvg + gvf = (1 + e?‘Y)Z(Eus2 4+ 2Fu v + Gvf). (48)
Similarly, along minimum principal curvature direction, we have

eu? + 2 fu,v, + gv? = (1+ es’)z(Eut2 + 2Fuv; + Gv,z). (49)

We also assume that after development, the principal curvature directions remain
orthogonal, which gives

Ry - Ry = (Ryus + Ryvs) - (Ryur + Ryv) =0. (50)
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Simplifying the above equation gives
eusus + f(usvr + urv5) + gusvy =0. (51)

Then we have a system of three linear equations (48), (49) and (%) fin ¢ whose
solution is given by

. V2[Eu? 4 2Fusvs + Gu2](1+ &*)?
(vslty — Ugv;)2
N vsz[Eu,2 + 2Fu;v, + thz](l—l— gh)?
(vsity — tsvy)2
utv,[Euf + 2Fugvg + vaz](1+ e5)2
B (vsity — Ugv;)2
usvs[Eu? + 2Fu,v, + Gv?)(1+ ")
- (st — ugv;)?
B u,z[Eus2 + 2Fugvs + Gvf](1+ S‘Y)Z
- (vsus — usvt)z
N uf[Eu,2 + 2Fu;v; + Gv,z](l—l— 8’)2'
(vsur — usvt)z

: (52)

f:

: (53)

(54)

We minimize the straing®(u«, v) and &’ (u, v) which satisfy the condition that after
adding these strains to the doubly curved surface along principal curvature directions,
the surface maps to a planar shape on which Gaussian curvature is zero. Using Eq. (12),
this results into a minimization problem same as problem (27)—(28) except‘that
are replaced by*, ¢’ respectively. As shown in Section 3, this constrained minimization
problem is discretized by using the finite difference method and trapezoidal rule of
integration. The final formulation is similar to that in Section 3 except tfat’ are
replaced bye®, ¢'. Again, the nonlinear constrained minimization problem is solved by
using the Fortran NAG routine E04VDF (1990).

4.1.2. Strain gradients

After solving for the strain distribution at the mid-surface, we then can determine the
ideal gradient of the strains along the normal of the mid-surface. As mentioned in Section 2,
the strain gradients provide the mechanism of surface curvature in metal forming process.
Based on Egs. (48), alonglirection, the relation of the first fundamental form coefficients
of the offset surface of distan@ealong the normal from the mid-surface is:

éu? + 2 fusvs + gv? = (1+ §*)Z(EAM€ + 2Fusvs + Gv?). (55)
Since after development, the 2D shape is the same across the thickness, we have

8(éu32 + 2fusvs + §v32)
ad
After substituting Eq. (55) into Eq. (56), and using the expression (20), we have

=0. (56)

(L8205 1) =0, (57)
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Expanding the above equation, we obtaid at 0,
A[In(1+ &*)] 1 a(fv : f?)
- _ AL = s 58
0d | 2s-Fs  dd |, M (58)
The last equality comes from Eq. (18). Similarly, alandjrection,
Aln(1+ &")] 1 3@ -f)
ad J—o  26-f, dd

= Kmin- (59)
d=0

4.2. Determination of planar developed shape

After solving the nonlinear minimization problem, we obtain the stratnands’ at all
grid points. The first fundamental form coefficiemtsf, g of the planar developed shape
is then obtained from Egs. (52)—(54). The method in Section 3.2 can be used to determine
the planar developed shape.

For the special case when the given surface is a developable surface, the first
optimization problem is solved with the solutictf (4, v) = &'(u,v) = 0, and only
the second optimization needs to be solved, which is equivalent to development of a
developable surface.

4.3. Inverse problem

In order to estimate the accuracy of this surface developmentalgorithm, we can compute
eij, fij, &j at all grid points based on the planar coordinag (Y;;) using the discrete
version of Egs. (42). We then evaludig, F;, G;; based on the;;, f;;, gi; and the strains
&%, &' by using Egs. (48) and (49), along with the following condition that the principal
curvature directions are orthogonal.

Eugsu; + F(vsu; + ugvy) + Gugu, = 0. (60)

Under the condition of ideal strain gradients along the principal curvature directions, the
second fundamental form coefficients at grid poibts M;;, N;; are recovered. Then we

solve the problem (44) to reconstruct the 3D surface. Suitable constraints can be imposed
to get rid of rigid body motion. The error of this surface development process can be
measured by the distance between the grid points on the reconstructed surface and those
on the original surface.

5. Analysis of the algorithms
5.1. Convergence analysis

In this section, we discuss the convergence of the surface development algorithms, i.e.,
the convergence of the discrete solution to the continuous soltitianv), ¥ (u, v) to the
optimization problem (27)—(28).

Theorem 5.1. The error on the right side of Eq28) due to discretization i©((Au)?,
(Av)?, AuAv).
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Proof. Leth(e"(u,v), ¢ (u, v)) be the right side of Eq. (28), then discretization introduces
errors Q(Au)?), O((Av)?), or O(AuAv) into all the derivatives itk (s (u, v), €' (u, v)).

By substitutingde/du with (de/du) + O((Au)?), de/dv with (de/dv) + O((Av)?), etc.
and expand the right side of Eq. (28), we obtain

h(e" (u, v), " (u, v)) = h(e" (u, v), e"(u, v)) + O((Au)?, (Av)?, AuAv), (61)

where is the constraint after discretizationo

Since the error on the right side of Eq. (28) due to discretization({\@)?, (Av)?2,
AuAv), and the error on the objective function in (27) due to discretization({&\@)?2,
(Av)?), as mentioned in Section 3.1.1, A% — 0, Av — 0, both the objective function
and constraints of the discretized optimization problem converge to those of the continuous
problem. Thus the discretized optimization problem for strain determination converges to
the continuous optimization problem (27)—(28).

In general, we expect that the discrete solutign ¢;; converges to the continuous
solutione® (u;, v;), e”(u;, vj) asAu — 0, Av — 0, and the error of variable%., el’.’j due

to discretization error is of the orden@\u)2, (Av)2, AuAv). Since the error of variables

el'., e} due to discretization error is of the second order, the error of the objective function
is also of the second order. According to the relations (26), the eregrfafg in (42) is also

of the second order, which means the error of the fihal coordinates of the developed
shape is of the second order with respeciAto = Av. Similar results exist for surface
development along the principal curvature directions. See (Yu, 1999) for more details.

5.2. Complexity analysis

5.2.1. The algorithm for strain determination

As shown in Section 3.1.2, solution of the first constrained optimization involves
solution of a sequential quadratic programming problems. In a major iteration, operations
mainly include the formulation of th& matrix, vectorg and the determination of the step
ay by line search. The dominant operations are in formulation ofHhmatrix by quasi-
Newton method, which requires(@) of operations, where is the dimension of;. In
our problemy = 2(Ng —2)(N, —2), so the total number of operations i$(@§’N§)3).
Solving the QP subproblem (32) has two distinct phases. In the first (the LP phase), an
iterative procedure is carried out to determine a feasible point. The second phase (the QP
phase) generates a sequence of feasible iterates in order to minimize the quadratic objective
function. In both phases, a subset of the constraints—called the working set—is used to
define the search direction at each iteration; typically, the working set includes constraints
that are satisfied within the corresponding tolerance. The LP phase for determining a
feasible point need only be carried out once in each major iteration, and possibly less
than once, when the solution from the previous major iteration is feasible. The cost of
linear programming depends on the method used; so let us assume the simplex method
is used. Though the worst case performance of the method is exponential (Bertsimas
and Tsitsiklis, 1997), this method operates omax n matrix to generate a solution
usually in Qm?n) time (Gass, 1985). The constraint matrix in problem (32) is of the size

[2NgNg + (Ng —2)(Ny — 2)] x 2Ng Ny, therefore, the LP takes(O\nggF) time. The
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QP phase involves 4 steps and takgs = O((N¥ N2)?) time. See (Yu, 1999) for detail.
In summary, each major iteration takeS(N;,‘Ng)B) time.

5.2.2. The algorithm for planar developed shape determination

The unconstrained minimization problem (43) is a least square minimization-ef
3Ny N functions withn = 2Ny Ny variables. The general algorithm for nonlinear least-
square problems

m

minF(x):Z[f,-(x)]z, xe€E" m<n,
i=1

is given in (Gill, and Murray, 1978). A detailed analysis of the algorithm (Yu, 1999)
shows that in each iteration of the non-constrained minimization, the required number of
operations is QN N?)3).

6. Examples

In this section, we demonstrate how the algorithms work for surface development based
on strains along isoparametric lines and along lines of curvature. The surfaces in the
examples include surfaces with all elliptical points (positive Gaussian curvature), surfaces
with all hyperbolic points (negative Gaussian curvature), and more complex surfaces that
have both positive and negative Gaussian curvature regions. Compared to the surfaces in
shipbuilding industry, the surfaces used in the examples have much larger absolute value
of Gaussian curvature and hence they are more difficult to develop. All examples were
executed on a graphics workstation running at 200 MHz.

Fig. 4. The bi-cubic Bézier surface in Example 1.
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6.1. Example 1

An elliptical bicubic Bézier surface(u, v) = Z?:o Z:;»:OI’,‘J'BL:;(M)BJ',:;(U) with the
following control points:

(0,0,0) (0,1/3,0.15  (0,2/3,0.15) (0,1,0)
(1/3,0,0.25) (1/3,1/3,05) (1/3,2/3,0.5) (1/3,1,0.25)
(2/3,0,0.25) (2/3,1/3,05) (2/3,2/3,0.5) (2/3,1,0.25)

(1,0,0) (1,1/3,0.15  (1,2/3,0.15) (1,1,0)

The surface along with its control polygon is shown in Fig. 4. The constrained
minimization problem (27)—(28) or its counterpart for strains along principal curvature
directions is discretized at 2313 grid points which are equally distributed:iny domain.

6.1.1. Results from surface development along isoparametric lines

Fig. 5(a) shows the strain distribution after the constrained minimization problem was
solved using tolerances of 10 for the constraints and 1@ for the objective function.
The strains are scaled to fit into the figure. The extreme values of the strain field are
located at(u, v) = (0, 0.5) or (u, v) = (1.0, 0.5) with (¢*, ¢¥) = (0.00121010.203392,
and at(u, v) = (0.5, 0) or (u, v) = (0.5, 1.0) with (&*, ¢”) = (0.242961 0.00136569. The
objective function converges to the value 08857 x 102 at the solution, and all the
constraints are within the tolerance 00k 10~°.

After development, the planar shape is shown in Fig. 5(b). The four corner points
have coordinates of (0,0)-0.14799, 1.10615), (1.18199, 0.15838), (1 03399 1.26452)

respectively. The final value of the formula (43) is less thah“mnesz 12, 1(e
flf + gl]) the sum of the squares of the right side of system (42) at all grid points.

(@) (b)

Fig. 5. (a) The strain distribution and (b) the corresponding 2D shape of the surface in Example 1,
developed along isoparametric lines.
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Fig. 6. Logarithmic strain gradients along (a) u-isoparametric line and (b) v-isoparametric line.

Figs. 6(a) and (b) show the ideal strain gradieMt&r |, o and 2D,
evaluated at grid points such that the first fundamental form coefficients of the 2D
developed shape are constant at any offset distambese to 0.

In order to estimate the accuracy of this surface development algorithm, we recon-
structed the 3D surface by using the method in Section 3.3. We fixed 6 variables to avoid
the rigid body motion in the surface reconstruction process. Werset z) = (0, 0, 0) at
(u,v) =(0,0), (x,z) =(0,0) at (u, v) = (0, 1), andz = 0 at (u, v) = (1, 0). After solving
the problem (44), the obtained reconstructed surface is shown in Fig. 7 (solid line) along
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Fig. 7. The reconstructed (solid line) and the original surfaces (dashed line) in Example 1, when
developed along isoparametric lines.

Table 1
CPU time for each optimization at various number of grid points (Example 1, development along
isoparametric lines)

Ng Niterl obj1 (103) CPU1(s) CPU1/Niterl(s) Niter2 CPU2(s) CPU2/Niter2 (s)

7 2 6.658 071 0355 11 586 0533

9 8 6.492 83 1066 6 1267 2112
11 7 6.428 3472 4960 5 3700 7.400
13 18 6.386 1749 9861 5 11066 22132
15 13 6.359 4026 30866 6 33323 55538
17 15 6.341 10928 73152 5 65871 131742
19 33 6.327 38648 11725 5 139080 27816
21 37 6.317 81688 22077 5 276126 55525

with the original surface (dashed line). We see an excellent match of the reconstructed sur-
face with the original surface. The maximum error (distance) between the grid points of
reconstructed surface and that of the original surfacedi8459319.

Table 1 shows the CPU time spent on each optimization for various numbers of grid
points, objective functions, etc., whelg, is the number of grid points in botih and v
directions; Niterl is the number of iterations in the first optimization; obj1 is the converged
value of the objective function in the first optimization; CPU1 is the CPU time spent on
the first optimization; CPU1/Niterl is the CPU time per iteration in the first optimization;
Niter2 is the number of iterations in the second optimization; CPU2 is the CPU time spent
on the second optimization; and CPU2/Niter2 is the CPU time per iteration in the second
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Table 2
Accuracy of the surface development process (Example 1, development along isoparametric
lines)
Number of grids 7 9 11 13 15 17 19 21
Au=Av 1/6 1/8 /10 112 114 1/16 1/18 120

Error (x10~3) 17.763 9.935 6.580 4.549 3428 2612 2113 1.697

optimization. For various numbers of grid points, the tolerance for constraints s 46d
the tolerance for objective function is 1)

After data fitting, the CPU time per iteration for the first optimization is approximately
2.5829x lO‘G(Ng)G, while that for the second optimization is approximatel8853 x
1075(N,)%4. We see that the CPU time per iteration in the first optimization agrees
well with the theoretical results in Section 5; i.e., wh&fi = N; = N,, the CPU time
per iteration in the first optimization is (@’g). However, the performance observed for
the second optimization is slightly worse than the theoretical results. InsteadN@O

CPU time per iteration, we observec{z@f-“) time per iteration. It is not clear why this
happened. One possibility may be because the NAG routine uses iterative methods inside
each iteration, so that &g, increases, the problems are increasingly ill-conditioned, thus
requiring more mini-iterations. A thorough track of the running time for different phases
of the algorithm may be used to resolve this problem.

Table 2 shows the maximum error due to the development and reconstruction process
for various numbers of grid points. After a data fitting process was carried out which fitted
the data in Table 2 with the function

E =c(Au)“. (62)

We obtainc = 0.5689,a = 1.9397. Here we see the error function due to the surface
development and reconstruction process is of the arder2. This is partly because the
assumption, that the angle between isoparametric lines does not change after development,
introduces extra errors.

6.1.2. Results from surface development along principal curvature directions

Fig. 8(a) shows the strain distribution after the constrained minimization problem was
solved using tolerances 19 for the constraints and 16 for the objective function. The
strains are scaled to fit into the figure. The extreme values of the strain field are located
at (u, v) = (0,0.5) or (u,v) = (1.0,0.5) with (¢*, ") = (0.18089690.006270948, and
at (v, v) = (0.5,0) or (u, v) = (0.5, 1.0) with (¢%, ") = (0.0015671420.1790917. The
objective function converges to@804x 102 at the solution, and all the constraints are
within the tolerance of D x 107°.

After development, the planar shape is shown in Fig. 8(b). The four corner points have
coordinates of (0,0)€0.11802, 1.09373), (1.17949,0.12786), (1. 06147 1. 22159) respec-

tively. The final value of the formula (43) is less tharx2.0~4 t|mesZ 12, 1(e
flf + gU) the sum of the squares of the right side of system (42) at all grid points.
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Fig. 8. (a) The strain distribution and (b) the corresponding 2D shape of the surface in Example 1,
developed along the principal curvature directions.

Table 3
CPU time for each optimization at various numbers of grid points (Example 1, development along
principal curvature directions)

N, Niterl objl(103) CPUL(s) CPUL/Niterl(s) Niter2 CPU2(s) CPU2/Niter2(s
g )

7 6 6.389 145 0242 11 566 0515

9 6 6.610 652 1087 6 1184 1973
11 9 6.703 3216 3573 6 4175 6958
13 13 6.788 1249 9615 5 10697 21394
15 16 6.826 4131 25870 5 29896 59792
17 15 6.842 9429 62853 5 68285 13657
19 18 6.846 23475 13010 5 141911 28382
21 28 6.850 57787 20610 5 27615 55230

Figs. 9(a) and (b) show the ideal strain gradiéHeel|, o and 2nCLe)),
evaluated at grid points such that the first fundamental form coefficients of the 2D
developed shape are constant at any offset distambese to 0.

In order to estimate the accuracy of this surface development algorithm, we recon-
structed the 3D surface by using the method in Section 4.3. After getting rid of the rigid
body motion, the obtained reconstructed surface is shown in Fig. 10 (solid line) along with
the original surface (dashed line). We see an excellent match of the reconstructed surface
with the original surface. The maximum error (distance) between the grid points of recon-

structed surface and that of the original surface 609951.
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Fig. 9. Logarithmic strain gradients along (a) maximum curvature direction (b) minimum curvature
direction for the surface in Example 1, developed along the principal curvature directions.

Table 3 shows the CPU time spent on each optimization for various number of grid
points, objective functions, etc. After data fitting, the CPU time per iteration for the first
optimization is approximately.2895x 10‘6(Ng)6, while that for the second optimization
is approximately 4834 x 107%(N,)54623 We see that the CPU time per iteration in
the first optimization agrees well with the theoretical results in Section 5; i.e., when
Ng = Ng = Ng, the CPU time per iteration in the first optimization i$N2?). However,



G. Yu et al. / Computer Aided Geometric Design 17 (2000) 545-577 569

Fig. 10. The reconstructed (solid line) and the original surfaces (dashed line) for the surface in
Example 1, developed along the principal curvature directions.

Table 4
Accuracy of the surface development process (Example 1, development along principal curvature
directions)

Grid number 7 9 11 13 15 17 19 21
Au = Av 1/6 1/8 1/10 1/12 1/14 1/16 1/18 1/20
Error (x 10‘3) 18.1004 9.9129 7.1817 5.0995 3.9349 3.0282 2.4936 1.9664

the performance observed for the second optimization is slightly worse than the theoretical
results. Instead of OJE) CPU time per iteration, we observe(wf-“) time per iteration.

Table 4 shows the maximum error due to the development and reconstruction process
for various number of grid points. When a data fitting process was carried out to fit the data
in Table 4 with Eq. (62), we obtain= 0.4433 a = 1.7987. Here we also see the error
function due to the surface development and reconstruction process is of the erder
This is partly because the assumption, that the angle between curvature directions does not
change after development, introduces extra errors.

6.2. Example 2

We use this example to show how the algorithms work and the convergence of the
objective function during the process.
The second surface is a bicubic Bézier surface

3 3

ru,v)= ZZ rijBis(u)Bj3(v),

i=0 j=0
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Fig. 11. The bicubic Bézier surface in Example 2.

where all the points on the surface are hyperbolic. The control points of the saddle-shaped
surface are given by:

(0,0,0.25) (0,1/3,0.1) (0,2/3,-0.1)  (0,1,—0.25)
(1/3,0,0.1)  (1/3,1/3,005  (1/3,2/3,-0.05 (1/3,1,-0.1)

(2/3,0,—0.1) (2/3,1/3,—0.05  (2/3,2/3,0.05  (2/3,1,0.1)

(1,0,—-0.25  (1,1/3,—0.1) (1,2/3,0.1) (1,1,0.25)

The surface is shown in Fig. 11. Again, ¥3L3 grid points are used in discretization.

6.2.1. Results from surface development along isoparametric lines

Fig. 12(a) shows the strain distribution after the constrained minimization problem was
solved using tolerances of 1®for the constraints and 16 for the objective function. The
strains are scaled to fit into the figure. The extreme values of the strain field are located
at (u,v) = (0.5,0.5) with (&%, ¢") = (0.08672140.0886954. The objective function
converges to the value of@05672x 10~2 at the solution, and all the constraints are within
the tolerance of 1.

After development, the planar shape is shown in Fig. 12(b). The four corner points
have coordinates of (0,0)-0.09223, 1.11186), (1.11534, 0.09258), (1 02311 1.20444),

respecnvely The final value of the formula (43) is less than5]10nesz 2 ZJ 1(e

f2 + gl ), the sum of the squares of the right side of system (42) at all grid points. Here
We see a planar development similar to that in Example 1.

Table 5 shows the variation of the objective function in the first optimization with respect
to Au(= Av) and number of grid points. The objective function can be fitted with the curve
obj1=0.003909+ 0.013492 Au)2. As pointed out in Section 5, a quadratic convergence
is observed in the objective function of the first optimization. If we allow extrapolation, we
can estimate the objective function approach98909 asAu = Av — 0.

6.2.2. Results from surface development along principal curvature directions
Fig. 13(a) shows the strain distribution after the constrained minimization problem was
solved using tolerances 19 for the constraints and 16 for the objective function. The
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Fig. 12. (a) The strain distribution and (b) the corresponding 2D shape of the surface in Example 2,
developed along isoparametric lines.

Table 5

The objective function of the 1st optimization (Example 2, development along isoparametric lines)
Grid number 7 9 11 13 15 17 19 21
Au=Av 1/6 1/8 /10 112 114 116  1/18  1/20

objl(x1073) 42831 4.125 4.038 4.006 3.970 3.964 3.953  3.945
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Fig. 13. (a) The strain distribution and (b) the corresponding 2D shape of the surface in Example 2,
developed along the principal curvature directions.
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Table 6
The objective function of the 1st optimization (Example 2, development along principal curvature
directions)

Grid number 7 9 11 13 15 17 19 21
Au= Av 1/6 1/8 1/10 1/12 1/14 1/16 1/18 1/20
obj1 (><10‘3) 3.1611 2.93382 2.8422 2.7909 2.7661 2.7486 2.7388 2.7331

Fig. 14. A wave-like B-spline surface in Example 3.

strains are scaled to fitinto the figure. As a comparison with the results in Section 6.2.1, the
strains at(u, v) = (0.5, 0.5) are (¢*, ¢’) = (0.05627 0.05581). The objective function is
2.791x 102 at the solution, and all the constraints are within the tolerancedot 10°.

After development, the planar shape is shown in Fig. 13(b). The four corner points have
coordinates of (0,0)£0.09909, 1.11083), (1.11505, 0.09953), (1. 01596 1. 21035) respec-
tively. The final value of the formula (43) is less thax3.0~° t|mesZ 12, 1(el] +
flf + gU) the sum of the squares of the right side of system (42) at all grid points.

Table 6 shows the variation of the objective function in the first optimization with respect
to Au(= Av) and number of grid points. The objective function can be fitted with the curve
obj1=0.002689+ 0.015442 Au)?. As pointed out in Section 5, a quadratic convergence
is observed of the objective function of the first optimization. If we allow extrapolation, we
can estimate the objective function approach@92689 asAu = Av — 0.

6.3. Example 3
This example shows the performance of the algorithms on a general B-spline surface.

A wave-like bicubic integral B-spline surface

4 4

Fu,v) =Y Y rijNia@)N;4(v)

i=0 j=0
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on a uniform knot vectoi0, 0,0,0,0.5, 1, 1, 1, 1]° with the following control points
(x,y,2)
(0,0, 0) (0,0.25,0) (0,0.5,0) (0,0.75,0) (0,1,0)
(0.25,0,00  (0.25,0.25,0.2) (0.25,0.5,0) (0.25,0.75,—0.2) (0.25,1,0)
(0.5,0,0) (0.5,0.25,0) (0.5,0.5,0) (0.5,0.75,0) (0.5,1,0)
(0.75,0,0) (0.75,0.25,—0.2) (0.75,0.5,0)  (0.75,0.75,0.2)  (0.75,1,0)
(1,0, 0) (1,0.25,0) (1,0.5,0) (1,0.75,0) (1,1,0)

is shown in Fig. 14. 1% 17 grid points are used in discretization.
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Fig. 15. (a) The strain distribution and (b) the corresponding 2D shape of the surface in Example 3,
developed along isoparametric lines.
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6.3.1. Results from surface development along isoparametric lines

Fig. 15(a) shows the strain distribution after the constrained minimization problem was
solved using tolerances of 16 for the constraints and 18 for the objective function.
The strains are scaled to fit into the figure. The strains at the center of the surface
(u,v) = (0.5,0.5) are (¢", V) = (0.0555 0.0550. The objective function converges to
the value of B4842x 10~* at the solution, and all the constraints are within the tolerance
of 1077,

After development, the planar shape is shown in Fig. 15(b). The four corner points
have coordinates @b, 0), (0.00315 1.0361%, (1.03618 —0.003132, (1. 03933 1 03306

respectively. The final value of the formula (43) is about‘iﬁmesz 12, 1(e
flf + gu) the sum of the squares of the right side of system (42) at all grid points.
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Fig. 16. (a) The strain distribution and (b) the corresponding 2D shape of the surface in Example 3,
developed along the principal curvature directions.
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6.3.2. Results from surface development along principal curvature directions

Fig. 16(a) shows the strain distribution after the constrained minimization problem was
solved using the tolerance of 1®for the constraints and 19 for the objective function.
The strains are scaled to fit into the figure. As a comparison with the results in Section
6.3.1, the strains atu, v) = (0.5,0.5) are (¢*, ') = (0.08258 0.08267. The objective
function is 16018x 10~ at the solution, and all the constraints are within the tolerance
of 1.0 x 1078,

After development, the planar shape is shown in Fig. 16(b). The four corner points have
coordinates 0f0, 0), (0.010731.03467, (1.03467 —0.01074, (1. 04540 1. 02393 re-

spectively. The final value of the formula (43) is about & 104 tlmesZ A Z l(e
fj + gU) the sum of the squares of the right side of system (42) at all grld points.

6.4. Discussion

The examples in this section show that the algorithms for surface development along
isoparametric lines and principal curvature directions work well geometrically. The strains
obtained and the CPU time spent on both methods are at the same magnitude. The 2D
developed shapes are similar. Physically, however, development along principal curvature
directions is more realizable. This can be seen from Eq. (41) that the gradient of the angle
changea(A9)|d o must satisfy. This gradient of the angle char?éé—m o is hard to

control during metal forming process, SII’]@%Z—M:() is not directly related to the strain
gradientsA# is due to shear strain, which is of the second order compared with the normal
strains, and is not simply related to the temperature distribution during metal forming
process by line heating. The gradients of the ideal principal strains in Egs. (58) and (59),
however, are easier to control by controlling the temperature gradient throughout the plate
thickness.

7. Concluding remarks

Algorithms based on nonlinear optimization for development of a doubly curved surface
have been presented in this paper. Examples of development of a surface with all elliptical
points, a surface with all hyperbolic points, and a general B-spline surface show the
effectiveness of the algorithms. Compared with the available algorithms for surface
development, the algorithms proposed here always find a solution that only stretching is
required from curved surface to its planar development, or only shrinkage is required from
planar development to the curved surface. This corresponds to forming of the surface by
using (laser or torch) line heating. For other manufacturing process, the formulation of the
minimization problem only needs to be slightly modified to take account of dilations from
a planar shape to a curved surface.

Comparison of the two surface development methods along isoparametric lines and
principal curvature directions shows no significant difference between their performance,
although development along principal curvature directions gives out strain gradients which
are more realizable.



576 G. Yu et al. / Computer Aided Geometric Design 17 (2000) 545-577

The examples show that the algorithms are time-consuming when the number of grid
points is large. An improvement may be possible if we explore the banded properties of
the Jacobian matrix after discretization of the constraints in the first optimization and the
least squares functions of the second optimization. Because of the finite difference method
in approximating all derivatives, after discretization, the constraint in the first optimization
or the least squares function in the second optimization only involve the variables at the
neighboring points. We may also subdivide a surface into a number of subpatches and
optimally develop each of them sequentially. This way, the total CPU time would be
cut significantly. Of course the continuity between neighboring subpatches needs to be
enforced, and the final solution may not be a global optimal solution. These are tasks
for future research. In addition, application of the methods developed in manufacturing
simulation is also a subject of future research.
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