14 research outputs found

    Revisiting the Temperature of the Diffuse ISM with CHESS Sounding Rocket Observations

    Get PDF
    Measuring the temperature and abundance patterns of clouds in the interstellar medium (ISM) provides an observational basis for models of the physical conditions within the clouds, which play an important role in studies of star and planet formation. The Colorado High-resolution Echelle Stellar Spectrograph (CHESS) is a far ultraviolet rocket-borne instrument designed to study the atomic-to-molecular transitions within diffuse molecular and translucent cloud regions. The final two flights of the instrument observed β1\beta^{1} Scorpii (β\beta Sco) and γ\gamma Arae. We present flight results of interstellar molecular hydrogen (H2_{\rm 2}) excitation on the sightlines, including measurements of the column densities and temperatures. These results are compared to previous values that were measured using the damping wings of low J′′^{\prime \prime} H2_{\rm 2} absorption features (Savage et al. 1977). For β\beta Sco, we find that the derived column density of the J′′^{\prime \prime} = 1 rotational level differs by a factor of 2-3 when compared to the previous observations. We discuss the discrepancies between the two measurements and show that the source of the difference is due to the opacity of higher rotational levels contributing to the J′′^{\prime \prime} = 1 absorption wing, increasing the inferred column density in the previous work. We extend this analysis to 9 CopernicusCopernicus and 13 FUSEFUSE spectra to explore the interdependence of the column densities of different rotational levels and how the H2_{\rm 2} kinetic temperature is influenced by these relationships. We find a revised average gas kinetic temperature of the diffuse molecular ISM of T01_{01} = 68 ±\pm 13 K, 12% lower than the value found previously.Comment: 20 pages, 10 Figures, Accepted in Ap

    Revisiting the Temperature of the Diffuse ISM with CHESS Sounding Rocket Observations

    Get PDF
    Measuring the temperature and abundance patterns of clouds in the interstellar medium (ISM) provides an observational basis for models of the physical conditions within the clouds, which play an important role in studies of star and planet formation. The Colorado High-resolution Echelle Stellar Spectrograph is a far-ultraviolet rocket-borne instrument designed to study the atomic-to-molecular transitions within diffuse molecular and translucent cloud regions. The final two flights of the instrument observed β^1 Scorpii (β Sco) and γ Arae. We present flight results of interstellar molecular hydrogen excitation on the sightlines, including measurements of the column densities and temperatures. These results are compared to previous values that were measured using the damping wings of low J'' H_2 absorption features. For β Sco, we find that the derived column density of the J'' = 1 rotational level differs by a factor of 2–3 when compared to the previous observations. We discuss the discrepancies between the two measurements and show that the source of the difference is due to the opacity of higher rotational levels contributing to the J'' = 1 absorption wing, increasing the inferred column density in the previous work. We extend this analysis to 9 Copernicus and 13 Far-Ultraviolet Spectroscopic Explorer spectra to explore the interdependence of the column densities of different rotational levels and how the H_2 kinetic temperature is influenced by these relationships. We find a revised average gas kinetic temperature of the diffuse molecular ISM of T_(01) = 68 ± 13 K, 12% lower than the value found previously

    The fourth flight of CHESS: spectral resolution enhancements for high-resolution FUV spectroscopy

    Get PDF
    In this proceeding, we describe the scientific motivation and technical development of the Colorado Highresolution Echelle Stellar Spectrograph (CHESS), focusing on the hardware advancements and testing of components for the fourth and final launch of the payload (CHESS-4). CHESS is a far ultraviolet rocket-borne instrument designed to study the atomic-to-molecular transitions within translucent cloud regions in the interstellar medium. CHESS is an objective echelle spectrograph, which uses a mechanically-ruled echelle and a powered (f/12.4) cross-dispersing grating; it is designed to achieve a resolving power R > 100,000 over the band pass λλ 1000–1600 Å. CHESS-4 utilizes a 40 mm-diameter cross-strip anode readout microchannel plate detector, fabricated by Sensor Sciences LLC, to achieve high spatial resolution with high global count rate capabilities (∼ MHz). An error in the fabrication of the cross disperser limited the achievable resolution on previous launches of the payload to R ∼ 4000. To remedy this for CHESS-4, we physically stress the echelle grating, introducing a shallow toroidal curvature to the surface of the optic. Preliminary laboratory measurements of the resulting spectrum show a factor of 4–5 improvement to the resolving power. Results from final efficiency and reflectivity measurements for the optical components of CHESS-4 are presented, along with the pre-flight laboratory spectra and calibration results. CHESS-4 launched on 17 April 2018 aboard NASA/University of Colorado Boulder sounding rocket mission 36.333 UG. We present flight results for the observation of the γ Ara sightline

    CIV Emission and the Ultraviolet through X-ray Spectral Energy Distribution of Radio-Quiet Quasars

    Full text link
    In the restframe UV, two of the parameters that best characterize the range of emission-line properties in quasar broad emission-line regions are the equivalent width and the blueshift of the CIV line relative to the quasar rest frame. We explore the connection between these emission-line properties and the UV through X-ray spectral energy distribution (SED) for radio-quiet (RQ) quasars. Our sample consists of a heterogeneous compilation of 406 quasars from the Sloan Digital Sky Survey and Palomar-Green survey that have well-measured CIV emission-line and X-ray properties (including 164 objects with measured Gamma). We find that RQ quasars with both strong CIV emission and small CIV blueshifts can be classified as "hard-spectrum" sources that are (relatively) strong in the X-ray as compared to the UV. On the other hand, RQ quasars with both weak CIV emission and large CIV blueshifts are instead "soft-spectrum" sources that are (relatively) weak in the X-ray as compared to the UV. This work helps to further bridge optical/soft X-ray "Eigenvector 1" relationships to the UV and hard X-ray. Based on these findings, we argue that future work should consider systematic errors in bolometric corrections (and thus accretion rates) that are derived from a single mean SED. Detailed analysis of the CIV emission line may allow for SED-dependent corrections to these quantities.Comment: AJ, in press; 39 pages, 11 figures, 3 table

    Unification of Luminous Type 1 Quasars through CIV Emission

    Full text link
    Using a sample of 30,000 quasars from SDSS-DR7, we explore the range of properties exhibited by high-ionization, broad emission lines, such as CIV 1549. Specifically we investigate the anti-correlation between L_UV and emission line EQW (the Baldwin Effect) and the "blueshifting" of high-ionization emission lines. The blueshift of the CIV emission line is nearly ubiquitous, with a mean shift of 810 km/s for radio-quiet (RQ) quasars and 360 km/s for radio-loud (RL) quasars, and the Baldwin Effect is present in both RQ and RL samples. Composite spectra are constructed as a function of CIV emission line properties in attempt to reveal empirical relationships between different line species and the SED. Within a two-component disk+wind model of the broad emission line region (BELR), where the wind filters the continuum seen by the disk component, we find that RL quasars are consistent with being dominated by the disk component, while BALQSOs are consistent with being dominated by the wind component. Some RQ objects have emission line features similar to RL quasars; they may simply have insufficient black hole (BH) spin to form radio jets. Our results suggest that there could be significant systematic errors in the determination of L_bol and BH mass that make it difficult to place these findings in a more physical context. However, it is possible to classify quasars in a paradigm where the diversity of BELR parameters are due to differences in an accretion disk wind between quasars (and over time); these differences are underlain primarily by the SED, which ultimately must be tied to BH mass and accretion rate.Comment: 51 pages, 18 figures, accepted by AJ, revised version includes various modifications based on the referee's comment
    corecore