276 research outputs found

    CEA systems: the means to achieve future food security and environmental sustainability?

    Get PDF
    As demand for food production continues to rise, it is clear that in order to meet the challenges of the future in terms of food security and environmental sustainability, radical changes are required throughout all levels of the global food system. Controlled Environment Agriculture (CEA) (a.k.a. indoor farming) has an advantage over conventional farming methods in that production processes can be largely separated from the natural environment, thus, production is less reliant on environmental conditions, and pollution can be better restricted and controlled. While output potential of conventional farming at a global scale is predicted to suffer due to the effects of climate change, technological advancements in this time will drastically improve both the economic and environmental performance of CEA systems. This article summarizes the current understanding and gaps in knowledge surrounding the environmental sustainability of CEA systems, and assesses whether these systems may allow for intensive and fully sustainable agriculture at a global scale. The energy requirements and subsequent carbon footprint of many systems is currently the greatest environmental hurdle to overcome. The lack of economically grown staple crops which make up the majority of calories consumed by humans is also a major limiting factor in the expansion of CEA systems to reduce the environmental impacts of food production at a global scale. This review introduces the concept of Integrated System CEA (ISCEA) in which multiple CEA systems can be deployed in an integrated localized fashion to increase efficiency and reduce environmental impacts of food production. We conclude that it is feasible that with sufficient green energy, that ISCEA systems could largely negate most forms of environmental damage associated with conventional farming at a global scale (e.g., GHGs, deforestation, nitrogen, phosphorus, pesticide use, etc.). However, while there is plenty of research being carried out into improving energy efficiency, renewable energy and crop diversification in CEA systems, the circular economy approach to waste is largely ignored. We recommend that industries begin to investigate how nutrient flows and efficiencies in systems can be better managed to improve the environmental performance of CEA systems of the future

    3.6 and 4.5 μ\mum Spitzer{\it Spitzer} Phase Curves of the Highly-Irradiated Hot Jupiters WASP-19b and HAT-P-7b

    Get PDF
    We analyze full-orbit phase curve observations of the transiting hot Jupiters WASP-19b and HAT-P-7b at 3.6 and 4.5 μ\mum obtained using the Spitzer Space Telescope. For WASP-19b, we measure secondary eclipse depths of 0.485%±0.024%0.485\%\pm 0.024\% and 0.584%±0.029%0.584\%\pm 0.029\% at 3.6 and 4.5 μ\mum, which are consistent with a single blackbody with effective temperature 2372±602372 \pm 60 K. The measured 3.6 and 4.5 μ\mum secondary eclipse depths for HAT-P-7b are 0.156%±0.009%0.156\%\pm 0.009\% and 0.190%±0.006%0.190\%\pm 0.006\%, which are well-described by a single blackbody with effective temperature 2667±572667\pm 57 K. Comparing the phase curves to the predictions of one-dimensional and three-dimensional atmospheric models, we find that WASP-19b's dayside emission is consistent with a model atmosphere with no dayside thermal inversion and moderately efficient day-night circulation. We also detect an eastward-shifted hotspot, suggesting the presence of a superrotating equatorial jet. In contrast, HAT-P-7b's dayside emission suggests a dayside thermal inversion and relatively inefficient day-night circulation; no hotspot shift is detected. For both planets, these same models do not agree with the measured nightside emission. The discrepancies in the model-data comparisons for WASP-19b might be explained by high-altitude silicate clouds on the nightside and/or high atmospheric metallicity, while the very low 3.6 μ\mum nightside planetary brightness for HAT-P-7b may be indicative of an enhanced global C/O ratio. We compute Bond albedos of 0 (<0.08<0.08 at 1σ1\sigma) and 0.38±0.060.38\pm 0.06 for WASP-19b and HAT-P-7b, respectively. In the context of other planets with thermal phase curve measurements, we show that WASP-19b and HAT-P-7b fit the general trend of decreasing day-night heat recirculation with increasing irradiation.Comment: 22 pages, 29 figures, accepted by Ap

    Immunological consequences of antihelminthic treatment in preschool children exposed to urogenital schistosome infection

    Get PDF
    Urogenital schistosomiasis, due to Schistosoma haematobium, is endemic in sub-Saharan Africa. Control is by targeted treatment with praziquantel but preschool age children are excluded from control programs. Immunological studies on the effect of treatment at this young age are scarce. In light of studies in older individuals showing that praziquantel alters antischistosome immune responses and responses to bystander antigens, this study aims to investigate how these responses would be affected by treatment at this young age. Antibody responses directed against schistosome antigens, Plasmodium falciparum crude and recombinant antigens, and the allergen house dust mite were measured in children aged 3 to 5 years before and 6 weeks after treatment. The change in serological recognition of schistosome proteins was also investigated. Treatment augmented antischistosome IgM and IgE responses. The increase in IgE responses directed against adult worm antigens was accompanied by enhanced antigen recognition by sera from the children. Antibody responses directed against Plasmodium antigens were not significantly affected by praziquantel treatment nor were levels of allergen specific responses. Overall, praziquantel treatment enhanced, quantitatively and qualitatively, the antiworm responses associated with protective immunity but did not alter Plasmodium-specific responses or allergen-specific responses which mediate pathology in allergic disease

    Osteoprotegerin-Mediated Homeostasis of Rank+ Thymic Epithelial Cells Does Not Limit Foxp3+ Regulatory T Cell Development

    Get PDF
    In the thymus, medullary thymic epithelial cells (mTEC) regulate T cell tolerance via negative selection and Foxp3(+) regulatory T cell (Treg) development, and alterations in the mTEC compartment can lead to tolerance breakdown and autoimmunity. Both the receptor activator for NF-κB (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) axis and expression of the transcriptional regulator Aire are involved in the regulation of thymus medullary microenvironments. However, their impact on the mechanisms controlling mTEC homeostasis is poorly understood, as are the processes that enable the thymus medulla to support the balanced production of mTEC-dependent Foxp3(+) Treg. In this study, we have investigated the control of mTEC homeostasis and examined how this process impacts the efficacy of Foxp3(+) Treg development. Using newly generated RANK Venus reporter mice, we identify distinct RANK(+) subsets that reside within both the mTEC(hi) and mTEC(lo) compartments and that represent direct targets of OPG-mediated control. Moreover, by mapping OPG expression to a subset of Aire(+) mTEC, our data show how cis- and trans-acting mechanisms are able to control the thymus medulla by operating on multiple mTEC targets. Finally, we show that whereas the increase in mTEC availability in OPG-deficient (Tnfrsf11b(−/−)) mice impacts the intrathymic Foxp3(+) Treg pool by enhancing peripheral Treg recirculation back to the thymus, it does not alter the number of de novo Rag2pGFP(+)Foxp3(+) Treg that are generated. Collectively, our study defines patterns of RANK expression within the thymus medulla, and it shows that mTEC homeostasis is not a rate-limiting step in intrathymic Foxp3(+) Treg production

    Matrix Rigidity Regulates Cancer Cell Growth by Modulating Cellular Metabolism and Protein Synthesis

    Get PDF
    Background: Tumor cells in vivo encounter diverse types of microenvironments both at the site of the primary tumor and at sites of distant metastases. Understanding how the various mechanical properties of these microenvironments affect the biology of tumor cells during disease progression is critical in identifying molecular targets for cancer therapy. Methodology/Principal Findings: This study uses flexible polyacrylamide gels as substrates for cell growth in conjunction with a novel proteomic approach to identify the properties of rigidity-dependent cancer cell lines that contribute to their differential growth on soft and rigid substrates. Compared to cells growing on more rigid/stiff substrates (>10,000 Pa), cells on soft substrates (150–300 Pa) exhibited a longer cell cycle, due predominantly to an extension of the G1 phase of the cell cycle, and were metabolically less active, showing decreased levels of intracellular ATP and a marked reduction in protein synthesis. Using stable isotope labeling of amino acids in culture (SILAC) and mass spectrometry, we measured the rates of protein synthesis of over 1200 cellular proteins under growth conditions on soft and rigid/stiff substrates. We identified cellular proteins whose syntheses were either preferentially inhibited or preserved on soft matrices. The former category included proteins that regulate cytoskeletal structures (e.g., tubulins) and glycolysis (e.g., phosphofructokinase-1), whereas the latter category included proteins that regulate key metabolic pathways required for survival, e.g., nicotinamide phosphoribosyltransferase, a regulator of the NAD salvage pathway. Conclusions/Significance: The cellular properties of rigidity-dependent cancer cells growing on soft matrices are reminiscent of the properties of dormant cancer cells, e.g., slow growth rate and reduced metabolism. We suggest that the use of relatively soft gels as cell culture substrates would allow molecular pathways to be studied under conditions that reflect the different mechanical environments encountered by cancer cells upon metastasis to distant sites

    Nitrous oxide emission factors from an intensively grazed temperate grassland: a comparison of cumulative emissions determined by eddy covariance and static chamber methods

    Get PDF
    Quantifying nitrous oxide (N2O) emissions from grazed pastures can be problematic due to the presence of hotspots and hot moments of N2O from animal excreta and synthetic fertilisers. In this study, we quantified field scale N2O emissions from a temperate grassland under a rotational grazing management using eddy covariance (EC) and static chamber techniques. Measurements of N2O by static chambers were made for four out of nine grazing events for a control, calcium ammonium nitrate (CAN), synthetic urine (SU) + CAN and dung + CAN treatments. Static chamber N2O flux measurements were upscaled to the field scale (FCH FIELD) using site specific emission factors (EF) for CAN, SU+CAN and dung + CAN. Mean N2O EFs were greatest from the CAN treatment while dung + CAN and SU + CAN emitted similar N2O-N emissions. Cumulative N2O-N emissions over the study period measured by FCH FIELD measurements were lower than gap-filled EC measurements. Emission factors of N2O from grazing calculated by FCH FIELD and gap-filled were 0.72% and 0.96%, respectively. N2O-N emissions were derived mainly from animal excreta (dung and urine) contributing 50% while N2O-N losses from CAN and background accounted for 36% and 14%, respectively. The study highlights the advantage of using both the EC and static chamber techniques in tandem to better quantify both total N2O-N losses from grazed pastures while also constraining the contribution of individual N sources. The EC technique was most accurate in quantifying N2O emissions, showing a range of uncertainty that was seven times lower relative to that attributed to static chamber measurements, due to the small chamber sample size per treatment and highly variable N2O flux measurements over space and time

    Natural Th17 cells are critically regulated by functional medullary thymic microenvironments

    Get PDF
    AbstractThe thymic medulla is critical for the enforcement of central tolerance. In addition to deletion of auto-reactive T-cells, the thymic medulla supports the maturation of heterogeneous natural αβT-cells linked to tolerance mechanisms. Natural IL-17-secreting CD4+αβT-cells (nTh17) represent recently described natural αβT-cells that mature and undergo functional priming intrathymically. Despite a proposed potential to impact upon either protective or pathological inflammatory responses, the intrathymic mechanisms regulating the balance of nTh17 development are unclear. Here we compare the development of distinct natural αβT-cells in the thymus. We reveal that thymic stromal MHC class II expression and RelB-dependent medullary thymic epithelial cells (mTEC), including Aire+ mTEC, are an essential requirement for nTh17 development. nTh17 demonstrate a partial, non-redundant requirement for both ICOS-ligand and CD80/86 costimulation, with a dispensable role for CD80/86 expression by thymic epithelial cells. Although mTEC constitutively expressed inducible nitric oxide synthase (iNOS), a critical negative regulator of conventional Th17 differentiation, iNOS was not essential to constrain thymic nTh17. These findings highlight the critical role of the thymic medulla in the differential regulation of novel natural αβT-cell subsets, and reveal additional layers of thymic medullary regulation of T-cell driven autoimmunity and inflammation

    The influence of tillage on N<sub>2</sub>O fluxes from an intensively managed grazed grassland in Scotland

    Get PDF
    Intensively managed grass production in highrainfall temperate climate zones is a globally important source of N2O. Many of these grasslands are occasionally tilled to rejuvenate the sward, and this can lead to increased N2O emissions. This was investigated by comparing N2O fluxes from two adjacent intensively managed grazed grasslands in Scotland, one of which was tilled. A combination of eddy covariance, high-resolution dynamic chamber and static chamber methods was used. N2O emissions from the tilled field increased significantly for several days immediately after ploughing and remained elevated for approximately 2 months after the tillage event contributing to an estimated increase in N2O fluxes of 0.85 0.11 kgN2O-N ha 1. However, any influence on N2O emissions after this period appears to be minimal. The cumulative N2O emissions associated with the tillage event and a fertiliser application of 70 kg N ammonia nitrate from one field were not significantly different from the adjacent untilled field, in which two fertiliser applications of 70 kg N ammonia nitrate occurred during the same period. Total cumulative fluxes calculated for the tilled and untilled fields over the entire 175-day measurement period were 2.14 0.18 and 1.65 1.02 kgN2O-N ha 1, respectivel
    • …
    corecore