21 research outputs found

    Effect of the upward curvature of toe springs on walking biomechanics in humans

    No full text
    Although most features of modern footwear have been intensively studied, there has been almost no research on the effects of toe springs. This nearly ubiquitous upward curvature of the sole at the front of the shoe elevates the toe box dorsally above the ground and thereby holds the toes in a constantly dorsiflexed position. While it is generally recognized that toe springs facilitate the forefoot’s ability to roll forward at the end of stance, toe springs may also have some effect on natural foot function. This study investigated the effects of toe springs on foot biomechanics in a controlled experiment in which participants walked in specially-designed sandals with varying curvature in the toe region to simulate toe springs ranging from 10 to 40 degrees of curvature. Using inverse dynamics techniques, we found that toe springs alter the joint moments and work at the toes such that greater degrees of toe spring curvature resulted in lower work requirements during walking. Our results help explain why toe springs have been a pervasive feature in shoes for centuries but also suggest that toe springs may contribute to weakening of the foot muscles and possibly to increased susceptibility to common pathological conditions such as plantar fasciitis

    Foot callus thickness does not trade off protection for tactile sensitivity during walking

    No full text
    Until relatively recently, humans, similar to other animals, were habitually barefoot. Therefore, the soles of our feet were the only direct contact between the body and the ground when walking. There is indirect evidence that footwear such as sandals and moccasins were first invented within the past 40 thousand years , the oldest recovered footwear dates to eight thousand years ago and inexpensive shoes with cushioned heels were not developed until the Industrial Revolution . Because calluses—thickened and hardened areas of the epidermal layer of the skin—are the evolutionary solution to protecting the foot, we wondered whether they differ from shoes in maintaining tactile sensitivity during walking, especially at initial foot contact, to improve safety on surfaces that can be slippery, abrasive or otherwise injurious or uncomfortable. Here we show that, as expected, people from Kenya and the United States who frequently walk barefoot have thicker and harder calluses than those who typically use footwear. However, in contrast to shoes, callus thickness does not trade-off protection, measured as hardness and stiffness, for the ability to perceive tactile stimuli at frequencies experienced during walking. Additionally, unlike cushioned footwear, callus thickness does not affect how hard the feet strike the ground during walking, as indicated by impact forces. Along with providing protection and comfort at the cost of tactile sensitivity, cushioned footwear also lowers rates of loading at impact but increases force impulses, with unknown effects on the skeleton that merit future study. 1 2

    Evolutionary anatomy of the plantar aponeurosis in primates, including humans

    No full text
    The plantar aponeurosis in the human foot has been extensively studied and thoroughly described, in part, because of the incidence of plantar fasciitis in humans. It is commonly assumed that the human plantar aponeurosis is a unique adaptation to bipedalism that evolved in concert with the longitudinal arch. However, the comparative anatomy of the plantar aponeurosis is poorly known in most mammals, even among non-human primates, hindering efforts to understand its function. Here, we review previous anatomical descriptions of 40 primate species and use phylogenetic comparative methods to reconstruct the evolution of the plantar aponeurosis and its relationship to the plantaris muscle in primates. Ancestral state reconstructions suggest that the overall organization of the human plantar aponeurosis is shared with chimpanzees and that a similar anatomical configuration evolved independently in different primate clades as an adaptation to terrestrial locomotion. The presence of a plantar aponeurosis with clearly developed lateral and central bands in the African apes suggests that this structure is not prohibitive to suspensory locomotion and that these species possess versatile feet adapted for both terrestrial and arboreal locomotion. This plantar aponeurosis configuration would have been advantageous in enhancing foot stiffness for bipedal locomotion in the earliest hominins, prior to the evolution of a longitudinal arch. Hominins may have subsequently evolved thicker and stiffer plantar aponeuroses alongside the arch to enable a windlass mechanism and elastic energy storage for bipedal walking and running, although this idea requires further testing

    Thoracic adaptations for ventilation during locomotion in humans and other mammals

    No full text
    Bipedal humans, like canids and some other cursorial mammals, are thought to have been selected for endurance running, which requires the ability to sustain aerobic metabolism over long distances by inspiring large volumes of air for prolonged periods of time. Here, we tested the general hypothesis that humans and other mammals selected for vigorous endurance activities evolved derived thoracic features to increase ventilatory capacity. To do so, we investigated whether humans and dogs rely on thoracic motion to increase tidal volume during running to a greater extent than goats, a species that was not selected for endurance locomotion. We found that while all three species use diaphragmatic breathing to increase tidal volume with increasing oxygen demand, humans also use both dorsoventral and mediolateral expansion of the thorax. Dogs use increased dorsoventral expansion of the thorax, representing an intermediate between humans and goats. 3D analyses of joint morphology of 10 species across four mammalian orders also showed that endurance-adapted cursorial species independently evolved more concavo-convex costovertebral joint morphologies that allow for increased rib mobility for thoracic expansion. Evidence for similarly derived concavo-convex costovertebral joints in Homo erectus corresponds with other evidence for the evolution of endurance running in the genus Homo

    Mobility of the human foot's medial arch helps enable upright bipedal locomotion.

    No full text
    Developing the ability to habitually walk and run upright on two feet is one of the most significant transformations to have occurred in human evolution. Many musculoskeletal adaptations enabled bipedal locomotion, including dramatic structural changes to the foot and, in particular, the evolution of an elevated medial arch. The foot's arched structure has previously been assumed to play a central role in directly propelling the center of mass forward and upward through leverage about the toes and a spring-like energy recoil. However, it is unclear whether or how the plantarflexion mobility and height of the medial arch support its propulsive lever function. We use high-speed biplanar x-ray measurements of foot bone motion on seven participants while walking and running and compare their motion to a subject-specific model without arch recoil. We show that regardless of intraspecific differences in medial arch height, arch recoil enables a longer contact time and favorable propulsive conditions at the ankle for walking upright on an extended leg. The generally overlooked navicular-medial cuneiform joint is primarily responsible for arch recoil in human arches. The mechanism through which arch recoil enables an upright ankle posture may have helped drive the evolution of the longitudinal arch after our last common ancestor with chimpanzees, who lack arch plantarflexion mobility during push-off. Future morphological investigations of the navicular-medial cuneiform joint will likely provide new interpretations of the fossil record. Our work further suggests that enabling medial arch recoil in footwear and surgical interventions may be critical for maintaining the ankle's natural propulsive ability

    Does plantar skin abrasion affect cutaneous mechanosensation?

    No full text
    Abstract In humans, plantar cutaneous mechanoreceptors provide critical input signals for postural control during walking and running. Because these receptors are located within the dermis, the mechanical properties of the overlying epidermis likely affect the transmission of external stimuli. Epidermal layers are highly adaptable and can form hard and thick protective calluses, but their effects on plantar sensitivity are currently disputed. Some research has shown no effect of epidermal properties on sensitivity to vibrations, whereas other research suggests that vibration and touch sensitivity diminishes with a thicker and harder epidermis. To address this conflict, we conducted an intervention study where 26 participants underwent a callus abrasion while an age‐matched control group (n = 16) received no treatment. Skin hardness and thickness as well as vibration perception thresholds and touch sensitivity thresholds were collected before and after the intervention. The Callus abrasion significantly decreased skin properties. The intervention group exhibited no change in vibration sensitivity but had significantly better touch sensitivity. We argue that touch sensitivity was impeded by calluses because hard skin disperses the monofilament's standardized pressure used to stimulate the mechanoreceptors over a larger area, decreasing indentation depth and therefore stimulus intensity. However, vibration sensitivity was unaffected because the vibrating probe was adjusted to reach specific indentation depths, and thus stimulus intensity was not affected by skin properties. Since objects underfoot necessarily indent plantar skin during weight‐bearing, calluses should not affect mechanosensation during standing, walking, or running
    corecore