250 research outputs found

    Joint inversion of teleseismic and ambient noise Rayleigh waves for phase velocity maps, an application to Iceland

    No full text
    We present a method for joint inversion of teleseismic and ambient noise Rayleigh wave data for phase velocity maps from 18 to 50?s period. We adapt the two-plane wave method for teleseismic data to include ambient noise phase data. We apply the method to data from Iceland's ICEMELT and HOTSPOT arrays. Checkerboard tests show that the joint inversion improves phase velocity model recovery over methods that use the data sets independently, particularly at 18?s period. The addition of ambient noise data also extends resolution to shallower depths and shorter periods in comparison to previous teleseismic results beneath Iceland. We show there are significant differences in the phase velocity maps from the joint approach in comparison to other approaches, for instance, using only teleseismic data, only ambient noise data, or the mean of the two. The difference in phase velocities in turn affects the resulting shear velocity models. The advantage of the joint inversion is that it produces a single phase velocity map that satisfies both data sets simultaneously. Our phase velocity maps show a transition from low velocities centered beneath the main volcanic centers in Iceland at 18–25?s period, primarily crustal depths, to a low-velocity region that traces the rift zones from the Reykjanes Ridge in the south to the Kolbeinsey Ridge in the north at 29–50?s period, greater depths. These results are consistent with previous studies, although with an extended and improved region of resolution, which extends further into the Atlantic and Arctic Ocean

    07. The Effects of Seed Mix Diversity on Soil Conditions and Nesting of Bees in Prairie Restorations

    Get PDF
    With the goal of conserving native bees, current recommendations for improving habitats include increasing available floral resources by planting diverse seed mixes. However, these recommendations only account for the nutritional needs of bees while the availability of equally important nesting resources is often ignored. Here we used a novel system to investigate the effects of seed mix diversity on abiotic factors previously associated with nest sites of ground-nesting bees—available bare ground and soil temperature, moisture, and compaction—and on the occurrence of nests. We used standard bee-collecting techniques and a newer method using soil emergence tents (E-tents) to assess how seed mix diversity affects the distribution of bees. Plots planted with the highest-diversity seed mixes had the greatest amount of available bare ground and the highest soil temperatures at the surface and depths commonly associated with bee nests. The observed changes suggest these areas should be preferred by ground-nesting bees, but nest occurrence did not vary significantly among treatments. However, foraging bee species richness and abundance was greatest in plots planted with the highest-diversity seed mixes. Failure to detect a response in nest occurrence to seed mix diversity may be the result of low bee nest density, manifested in only a few nests being detected and low statistical power. We conclude that the current recommendation of planting highly diverse seed mixes provides adequate nutritional resources and improves some of the key abiotic factors associated with selection of nest sites by ground-nesting bees

    Monitoring remote ocean waves using P-wave microseisms

    Get PDF
    Oceanic microseisms are generated by the interaction of opposing ocean waves and subsequent coupling with the seabed, so microseisms should contain information on the ocean conditions that generated them. This leads to the possibility of using seismic records as a proxy for the ocean gravity wavefield. Here we investigate the P-wave component of microseisms, which has previously been linked to areas of high wave interaction intensity in mid-ocean regions. We compare modeled P-wave microseismic sources with those observed at an array in California, and also investigate the relationship between observed sources and significant wave height. We found that the time-varying location of microseism sources in the North Pacific, mapped from beamforming and backprojection of seismic data, was accurate to ≤10° in 90% of cases. The modeled sources were found to dominate at ∼0.2 Hz which was also reflected in the seismic observations. An empirical relationship between observed beampower and modeled source power allowed sources during an independent data period to be estimated with a correlation coefficient of 0.63. Likewise, significant wave height was also estimated with a correlation coefficient of 0.63. Our findings suggest that with improvements in resolution and amplitude retrieval from beamforming, correlations up to 0.78 should be possible between observed P-wave microseisms and significant wave height in remote ocean regions

    Source regions and reflection of infragravity waves offshore of U.S.'s Pacific Northwest

    Get PDF
    Infragravity waves are oceanic surface gravity waves but with wavelengths (10's km) and periods (>30s) much longer than wind waves and swell. Mostly studied in shallow water, knowledge of infragravity waves in deep water has remained limited. Recent interest in deep-water infragravity waves has been motivated by the error they may contribute to future high-resolution satellite radar altimetry measurements of sea level. Here, deep-water infragravity waves offshore of the Pacific Northwest of the USA were studied using Differential Pressure Gauges which were deployed as part of the Cascadia Initiative array from September 2012-May 2013. Cross-correlation of the records revealed direction of infragravity wave propagation across the array, from which source regions were inferred. The dominant source was found to be the coastline to the east, associated with large wind waves and swell incident on the eastern side of the basin. The source shifted southward during northern-hemisphere summer, and on several days in the record infragravity waves arrived from the western side of the Pacific. Asymmetry of cross-correlation functions for five of these westerly arrivals was used to calculate the ratio of seaward to shoreward propagating energy, and hence estimate the strength of infragravity wave reflection at periods of 100-200s. Reflection of these remote arrivals from the west appeared to be strong, with a lower bound estimate of r=0.49±0.29 (reflection coefficient ± standard error) and an upper bound estimate of r=0.74±0.06. These results suggest that reflection at ocean boundaries may be an important consideration for infragravity waves in the deep ocean

    Seismic imaging of a mid-lithospheric discontinuity beneath Ontong Java Plateau

    Get PDF
    Ontong Java Plateau (OJP) is a huge, completely submerged volcanic edifice that is hypothesized to have formed during large plume melting events ?90 and 120 My ago. It is currently resisting subduction into the North Solomon trench. The size and buoyancy of the plateau along with its history of plume melting and current interaction with a subduction zone are all similar to the characteristics and hypothesized mechanisms of continent formation. However, the plateau is remote, and enigmatic, and its proto-continent potential is debated. We use SS precursors to image seismic discontinuity structure beneath Ontong Java Plateau. We image a velocity increase with depth at 28±4 km consistent with the Moho. In addition, we image velocity decreases at 80±5 km and 282±7 km depth. Discontinuities at 60–100 km depth are frequently observed both beneath the oceans and the continents. However, the discontinuity at 282 km is anomalous in comparison to surrounding oceanic regions; in the context of previous results it may suggest a thick viscous root beneath OJP. If such a root exists, then the discontinuity at 80 km bears some similarity to the mid-lithospheric discontinuities (MLDs) observed beneath continents. One possibility is that plume melting events, similar to that which formed OJP, may cause discontinuities in the MLD depth range. Plume–plate interaction could be a mechanism for MLD formation in some continents in the Archean prior to the onset of subduction

    Immense magnetic response of exciplex light emission due to correlated spin-charge dynamics

    Full text link
    As carriers slowly move through a disordered energy landscape in organic semiconductors, tiny spatial variations in spin dynamics relieve spin blocking at transport bottlenecks or in the electron-hole recombination process that produces light. Large room-temperature magnetic-field effects (MFE) ensue in the conductivity and luminescence. Sources of variable spin dynamics generate much larger MFE if their spatial structure is correlated on the nanoscale with the energetic sites governing conductivity or luminescence such as in co-evaporated organic blends within which the electron resides on one molecule and the hole on the other (an exciplex). Here we show that exciplex recombination in blends exhibiting thermally-activated delayed fluorescence (TADF) produces MFE in excess of 60% at room temperature. In addition, effects greater than 4000% can be achieved by tuning the device's current-voltage response curve by device conditioning. These immense MFEs are both the largest reported values for their device type at room temperature. Our theory traces this MFE and its unusual temperature dependence to changes in spin mixing between triplet exciplexes and light-emitting singlet exciplexes. In contrast, spin mixing of excitons is energetically suppressed, and thus spin mixing produces comparatively weaker MFE in materials emitting light from excitons by affecting the precursor pairs. Demonstration of immense MFE in common organic blends provides a flexible and inexpensive pathway towards magnetic functionality and field sensitivity in current organic devices without patterning the constituent materials on the nanoscale. Magnetic fields increase the power efficiency of unconditioned devices by 30% at room temperature, also showing that magnetic fields may increase the efficiency of the TADF process.Comment: 12 pages, PRX in pres
    • …
    corecore