#### Southern Adventist University KnowledgeExchange@Southern

#### **Faculty Works**

Physics and Engineering Department

Spring 3-5-2018

#### NV Center Detection of Electric Fields and Low-Intensity Light

Nicholas Harmon Southern Adventist University, nharmon@southern.edu

Michael Flatte University of Iowa

Follow this and additional works at: https://knowledge.e.southern.edu/facworks\_physics Part of the <u>Condensed Matter Physics Commons</u>, and the <u>Quantum Physics Commons</u>

#### **Recommended** Citation

Harmon, Nicholas and Flatte, Michael, "NV Center Detection of Electric Fields and Low-Intensity Light" (2018). *Faculty Works*. 21. https://knowledge.e.southern.edu/facworks\_physics/21

This Other is brought to you for free and open access by the Physics and Engineering Department at KnowledgeExchange@Southern. It has been accepted for inclusion in Faculty Works by an authorized administrator of KnowledgeExchange@Southern. For more information, please contact jspears@southern.edu.

NV Center Detection of Electric Fields and Low-Intensity Light

> Nicholas J. Harmon University of Iowa (Southern Adventist University)

> > Michael E. Flatté University of Iowa

APS March Meeting Los Angeles Session 26: Sensing with Defects Monday March 5, 2018, 2:03 pm



This work was supported by the DARPA program DETECT



#### Motivation

NV centers in diamond have been shown to be sensitive electric field sensors

Dolde et al. Nat. Phys. 7, 459 (2011)

Dolde et al. Phys. Rev. Lett. **112**, 097603 (2014)

B26.00002 High precision electric field sensing with spin ensembles in diamond. J. Steiner et al.



### Motivation

 Can electric field detection be parlayed into single/ few photon detection?



# Motivation

 Can electric field detection be parlayed into single/ few photon detection? 1. no light pyrene-tethered disperse red-1 (DR1P) **6D** photosensitive molecules 9D conformational changes 2. UV light lead to change in dipole 3 White light moment Kim, M., et al. Nano Letters, 12, 182 (2012)



- light sensor based on electric field of dipole
  - transport in graphene, carbon nanotubes modulated by the electric field after absorption

Young, Sarovar, Léonard, arXiv:1710.09512 (2017)

# Diamond NV Center as Sensor



- Position chromophore near diamond
  - Electric dipole field interacts with NV spin
  - Chromophore electric field ~10<sup>6</sup> V/m at few nm below diamond surface



Flatté and Koenraad, Nat. Mat. 10 91, (2011)

# NV Ground State

a

Electric field splits  $m_s = +/-1$  states

$$\mathscr{H}_{gs} = (2\pi\hbar D_{gs} + d_{gs,||}E_z)S_z^2 + d_{gs,\perp} \left[ E_x(S_x^2 - S_y^2) + E_y(S_xS_y + S_yS_x) \right]$$



# NV Ground State

Electric field splits  $m_s = +/-1$  states

$$\mathscr{H}_{gs} = (2\pi\hbar D_{gs} + d_{gs,||}E_z)S_z^2 + d_{gs,\perp} \left[ E_x(S_x^2 - S_y^2) + E_y(S_xS_y + S_yS_x) \right]$$



initiate spin as  $|1\rangle$ 





#### Quantum Discrimination

- Measuring (-1) 
  electric field 
  photon absorption
- Distinguishing between non-orthogonal states is not possible with certainty (what to conclude if |1> is measured?)



# Quantum Discrimination

 Quantum discrimination theory determines which operators will minimize the error [positive operator valued measurements (POVMs)]

C. W. Helstrom, Quantum Detection and Estimation Theory (Academic, New York, 1976)

•  $|\pm1\rangle$  is not best measurement basis

**INIVERSITY** 

OF LOWA

• Optimal measurement operators (i.e. minimize error)  $\hat{\Pi}_0 = |\phi_0\rangle\langle\phi_0|$  where  $|\phi_k\rangle$  are eigenvectors of  $\hat{\Pi}_1 = |\phi_1\rangle\langle\phi_1|$   $\Lambda = P_1\rho_1 - P_0\rho_0$ 

 $ho_0$  density matrix for E = 0

 $\rho_1$  density matrix for E  $\neq$  0

AZ Chaudhry. Phys. Rev. A 91, 062111 (2015)

# Quantum Discrimination

- Find minimal error probability
- Density matrices without electric field (ρ<sub>0</sub>) and with electric field (ρ<sub>1</sub>) are determined from Liouville-Lindblad equation

$$\frac{\partial \rho}{\partial t} = -\frac{i}{\hbar} [\mathscr{H}_{gs}, \rho] + \hat{L}_d \rho \hat{L}_d^T - \frac{1}{2} \{ \hat{L}_d^T \hat{L}_d, \rho \}$$
  
coherent decoherence  
$$\mathscr{H}_{gs} = (2\pi\hbar D_{gs} + d_{gs,||}E_z)S_z^2 + d_{gs,\perp} \left[ E_x(S_x^2 - S_y^2) + E_y(S_xS_y + S_yS_x) \right] \qquad \Lambda = P_1\rho_1 - P_0\rho_0$$

 $\begin{array}{ll} \mbox{Minimum} \\ \mbox{error prob} \end{array} = P_0 \mbox{Tr}(\hat{\Pi}_1 \rho_0) + P_1 \mbox{Tr}(\hat{\Pi}_0 \rho_1) \end{array}$ 

 $U^{\dagger} \rho_i U$ 



- Measurement should take place when error smallest @ t<sub>min</sub>
- Larger electric fields, more accuracy and faster determination

# Results



 $\lfloor N/2 \rfloor$ 

 $+P_{1}$ 

UNIVERSITY

OF IOWA

### Conclusions

- NV spin + chromophore as single shot (i.e. fast) electric field/photon quantum detector
- Errors are competitive with superconducting nanowire single photon detectors
  - multiple NV sensors allows for dramatic error reduction
- Photon arrival/field-turn-on times can be determined



This work was supported by the DARPA program DETECT

