8 research outputs found

    Attentional capture by a perceptually salient non-target facilitates target processing through inhibition and rapid rejection

    Get PDF
    Perceptually salient distractors typically interfere with target processing in visual search situations. Here we demonstrate that a perceptually salient distractor that captures attention can nevertheless facilitate task performance if the observer knows that it cannot be the target. Eye-position data indicate that facilitation is achieved by two strategies: inhibition when the first saccade was directed to the target, and rapid rejection when the first saccade was captured by the salient distractor. Both mechanisms relied on the distractor being perceptually salient and not just perceptually different. The results demonstrate how bottom-up attentional capture can play a critical role in constraining top-down attentional selection at multiple stages of processing throughout a single trial

    Attentional capture by a perceptually salient non-target facilitates target processing through inhibition and rapid rejection

    Get PDF
    Perceptually salient distractors typically interfere with target processing in visual search situations. Here we demonstrate that a perceptually salient distractor that captures attention can nevertheless facilitate task performance if the observer knows that it cannot be the target. Eye-position data indicate that facilitation is achieved by two strategies: inhibition when the first saccade was directed to the target, and rapid rejection when the first saccade was captured by the salient distractor. Both mechanisms relied on the distractor being perceptually salient and not just perceptually different. The results demonstrate how bottom-up attentional capture can play a critical role in constraining top-down attentional selection at multiple stages of processing throughout a single trial

    Pre-Stimulus Activity Predicts the Winner of Top-Down vs. Bottom-Up Attentional Selection

    Get PDF
    Our ability to process visual information is fundamentally limited. This leads to competition between sensory information that is relevant for top-down goals and sensory information that is perceptually salient, but task-irrelevant. The aim of the present study was to identify, from EEG recordings, pre-stimulus and pre-saccadic neural activity that could predict whether top-down or bottom-up processes would win the competition for attention on a trial-by-trial basis. We employed a visual search paradigm in which a lateralized low contrast target appeared alone, or with a low (i.e., non-salient) or high contrast (i.e., salient) distractor. Trials with a salient distractor were of primary interest due to the strong competition between top-down knowledge and bottom-up attentional capture. Our results demonstrated that 1) in the 1-sec pre-stimulus interval, frontal alpha (8–12 Hz) activity was higher on trials where the salient distractor captured attention and the first saccade (bottom-up win); and 2) there was a transient pre-saccadic increase in posterior-parietal alpha (7–8 Hz) activity on trials where the first saccade went to the target (top-down win). We propose that the high frontal alpha reflects a disengagement of attentional control whereas the transient posterior alpha time-locked to the saccade indicates sensory inhibition of the salient distractor and suppression of bottom-up oculomotor capture

    Transient increase in theta/alpha (7–8 Hz) activity just prior to top-down saccade.

    No full text
    <p>A) There was a transient alpha increase locked to the saccade onset. This transient increase was significantly larger for fs-target trials. B) The topography difference of the transient theta/alpha increase (mean βˆ’0.1 to 0 s) between fs-distractor and fs-target trials. C) The saccade locked ERPs for fs-distractor (red) and fs-target (blue) trials in both salient (thick lines) and none salient distractor (thin lines) conditions. A slow negative drift preceded the onset of all the saccades. The difference wave between fs-target and fs-distractor trials revealed a negative deflection. D) The topography of the negative deflection observed the in fs-target- fs-distractor difference wave.</p

    Example trial procedure.

    No full text
    <p>Each trial began with a blink of the fixation diamond. After a jittered interval, the visual search items appeared (illustrated here by a target in the left visual field) and subjects were free to move their eyes and indicate whether the target β€œt” was upright or inverted. Targets appeared alone, with a neutral distractor, or a salient distractor. Note that items are not drawn to scale for illustrative clarity.</p

    Pre-stimulus (βˆ’1 -to 0 s) alpha activity is indicative of a bottom-up win.

    No full text
    <p>A) Grand Average of the topography of pre-stimulus alpha power (8–12 Hz) for fs-distractor trials (left) and fs-target trials (right). The alpha activity is maximal at the central frontal electrodes. B) The time-frequency representations of fs-distractor (top) and fs-target trials (bottom) at the frontal central FCz electrode. C) The topography of the difference in pre-stimulus alpha- power between fs-distractor and fs-target trials. There was significantly greater pre-stimulus alpha in fs-distractor than fs-target trials. D) The stimulus locked N1 response. The peak amplitude of visual N1 response occurring at 0.175 s was bigger for fs-target trials (blue line) than fs-distractor trials (red line). E) The topography of the N1 response.</p

    The latency of saccades.

    No full text
    <p>First saccade latencies in each experimental condition in A) group and B) individuals. Error bars on group data are standard error of the mean. First saccade latencies were significantly faster for fs-distractor trials in the distractor-salient condition. This suggests that the salient distractor produced automatic oculomotor capture.</p
    corecore