4,000 research outputs found
On the Electronic Transport Mechanism in Conducting Polymer Nanofibers
Here, we present theoretical analysis of electron transport in polyaniline
based (PANi) nanofibers assuming the metalic state of the material. To build up
this theory we treat conducting polymers as a special kind of granular metals,
and we apply the quantum theory of conduction in mesoscopic systems to describe
the transport between metallic-like granules. Our results show that the concept
of resonance electron tunneling as the predominating mechanism providing charge
transport between the grains is supported with recent experiments on the
electrical characterization of single PANi nanofibers. By contacting the
proposed theory with the experimental data we estimate some important
parameters characterizing the electron transport in these materials. Also, we
discuss the origin of rectifying features observed in current-voltage
characteristics of fibers with varying cross-sectional areas.Comment: 5 pages, 1 figure, accepted for publication in Phys. Rev. B, Vol.72,
xxxx (2005
EPR Study of Spin Labeled Brush Polymers in Organic Solvents
Spin-labeled polylactide brush polymers were synthesized via ring-opening metathesis polymerization (ROMP), and nitroxide radicals were incorporated at three different locations of brush polymers: the end and the middle of the backbone, and the end of the side chains (periphery). Electron paramagnetic resonance (EPR) was used to quantitatively probe the macromolecular structure of brush polymers in dilute solutions. The peripheral spin-labels showed significantly higher mobility than the backbone labels, and in dimethylsulfoxide (DMSO), the backbone end labels were shown to be more mobile than the middle labels. Reduction of the nitroxide labels by a polymeric reductant revealed location-dependent reactivity of the nitroxide labels: peripheral nitroxides were much more reactive than the backbone nitroxides. In contrast, almost no difference was observed when a small molecule reductant was used. These results reveal that the dense side chains of brush polymers significantly reduce the interaction of the backbone region with external macromolecules, but allow free diffusion of small molecules
Core-Clickable PEG-Branch-Azide Bivalent-Bottle-Brush Polymers by ROMP: Grafting-Through and Clicking-To
The combination of highly efficient polymerizations with modular "click" coupling reactions has enabled the synthesis of a wide variety of novel nanoscopic tructures. Here we demonstrate the facile synthesis of a new class of clickable, branched nanostructures, polyethylene glycol (PEG)-branch-azide bivalent-brush polymers, facilitated by "graft-through" ring-opening metathesis polymerization of a branched norbornene-PEG-chloride macromonomer followed by halide-azide exchange. The resulting bivalent-brush polymers possess azide groups at the core near a polynorbornene backbone with PEG chains extended into solution; the structure resembles a unimolecular micelle. We demonstrate copper-catalyzed azide-alkre cycloaddition (CuAAC) "click-to" coupling of a photocleavable doxorubicin (DOX)-alkyne derivative to the azide core. The CuAAC coupling was quantitative across a wide range of nanoscopic sizes (similar to 6-similar to 50 nrn); UV photolysis of the resulting DOX-loaded materials yielded free DOX that was therapeutically effective against human cancer cells
Using EPR To Compare PEG-branch-nitroxide “Bivalent-Brush Polymers” and Traditional PEG Bottle–Brush Polymers: Branching Makes a Difference
Attachment of poly(ethylene glycol) (PEG) to polymeric nanostructures is a general strategy for sterically shielding and imparting water solubility to hydrophobic payloads. In this report, we describe direct graft-through polymerization of branched, multifunctional macromonomers that possess a PEG domain and a hydrophobic nitroxide domain. Electron paramagnetic resonance (EPR) spectroscopy was used to characterize microenvironments within these novel nanostructures. Comparisons were made to nitroxide-labeled, traditional bottle-brush random and block copolymers. Our results demonstrate that bivalent bottle-brush polymers have greater microstructural homogeneity compared to random copolymers of similar composition. Furthermore, we found that compared to a traditional brush polymer, the branched-brush, “pseudo-alternating” microstructure provided more rotational freedom to core-bound nitroxides, and greater steric shielding from external reagents. The results will impact further development of multivalent bottle-brush materials as nanoscaffolds for biological applications
Electrospun Hybrid Organic/Inorganic Semiconductor Schottky Nanodiode
We report on a simple method to fabricate, under ambient conditions and within seconds, Schottky nanodiodes using electrospun polyaniline nanofibers and an inorganic n-doped semiconductor. In addition to being a rectifier, the advantage of our design is the complete exposure of the rectifying nanojunction to the surrounding environment, making them attractive candidates in the potential fabrication of low power, supersensitive, and rapid response sensors as well. The diode parameters were calculated assuming the standard thermionic emission model of a Schottky junction, and the use of this junction as a gas sensor was examined
Hubble Space Telescope and Ground-Based Observations of Type Ia Supernovae at Redshift 0.5: Cosmological Implications
We present observations of the Type Ia supernovae (SNe) 1999M, 1999N, 1999Q,
1999S, and 1999U, at redshift z~0.5. They were discovered in early 1999 with
the 4.0~m Blanco telescope at Cerro Tololo Inter-American Observatory by the
High-z Supernova Search Team (HZT) and subsequently followed with many
ground-based telescopes. SNe 1999Q and 1999U were also observed with the Hubble
Space Telescope. We computed luminosity distances to the new SNe using two
methods, and added them to the high-z Hubble diagram that the HZT has been
constructing since 1995.
The new distance moduli confirm the results of previous work. At z~0.5,
luminosity distances are larger than those expected for an empty universe,
implying that a ``Cosmological Constant,'' or another form of ``dark energy,''
has been increasing the expansion rate of the Universe during the last few
billion years.Comment: 68 pages, 22 figures. Scheduled for the 01 February 2006 issue of
Ap.J. (v637
Recommended from our members
Biological, clinical and population relevance of 95 loci for blood lipids.
Plasma concentrations of total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol and triglycerides are among the most important risk factors for coronary artery disease (CAD) and are targets for therapeutic intervention. We screened the genome for common variants associated with plasma lipids in >100,000 individuals of European ancestry. Here we report 95 significantly associated loci (P < 5 x 10(-8)), with 59 showing genome-wide significant association with lipid traits for the first time. The newly reported associations include single nucleotide polymorphisms (SNPs) near known lipid regulators (for example, CYP7A1, NPC1L1 and SCARB1) as well as in scores of loci not previously implicated in lipoprotein metabolism. The 95 loci contribute not only to normal variation in lipid traits but also to extreme lipid phenotypes and have an impact on lipid traits in three non-European populations (East Asians, South Asians and African Americans). Our results identify several novel loci associated with plasma lipids that are also associated with CAD. Finally, we validated three of the novel genes-GALNT2, PPP1R3B and TTC39B-with experiments in mouse models. Taken together, our findings provide the foundation to develop a broader biological understanding of lipoprotein metabolism and to identify new therapeutic opportunities for the prevention of CAD
The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe
The preponderance of matter over antimatter in the early Universe, the
dynamics of the supernova bursts that produced the heavy elements necessary for
life and whether protons eventually decay --- these mysteries at the forefront
of particle physics and astrophysics are key to understanding the early
evolution of our Universe, its current state and its eventual fate. The
Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed
plan for a world-class experiment dedicated to addressing these questions. LBNE
is conceived around three central components: (1) a new, high-intensity
neutrino source generated from a megawatt-class proton accelerator at Fermi
National Accelerator Laboratory, (2) a near neutrino detector just downstream
of the source, and (3) a massive liquid argon time-projection chamber deployed
as a far detector deep underground at the Sanford Underground Research
Facility. This facility, located at the site of the former Homestake Mine in
Lead, South Dakota, is approximately 1,300 km from the neutrino source at
Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino
charge-parity symmetry violation and mass ordering effects. This ambitious yet
cost-effective design incorporates scalability and flexibility and can
accommodate a variety of upgrades and contributions. With its exceptional
combination of experimental configuration, technical capabilities, and
potential for transformative discoveries, LBNE promises to be a vital facility
for the field of particle physics worldwide, providing physicists from around
the globe with opportunities to collaborate in a twenty to thirty year program
of exciting science. In this document we provide a comprehensive overview of
LBNE's scientific objectives, its place in the landscape of neutrino physics
worldwide, the technologies it will incorporate and the capabilities it will
possess.Comment: Major update of previous version. This is the reference document for
LBNE science program and current status. Chapters 1, 3, and 9 provide a
comprehensive overview of LBNE's scientific objectives, its place in the
landscape of neutrino physics worldwide, the technologies it will incorporate
and the capabilities it will possess. 288 pages, 116 figure
- …
