8,208 research outputs found

    The Effects of Coworker Relationships, Involvement, and Supportiveness on Job Satisfaction and Performance

    Get PDF
    Past research has indicated that relationships, involvement, and supportiveness have an effect on job satisfaction and performance. A study was done on Gettysburg College students who have had experience with group work. Sixty-four (29 males, 35 females) Gettysburg College students were used as participants in the study. The study was split fairly evenly between sophomores, juniors, and seniors. To start, the survey included two demographic questions: gender and class year. Participants completed an online survey about the relationships among group mates, group involvement, and group support experience. Questions about the overall satisfaction and performance were also included. A correlational design was used to analyze the data. The results of this study concluded that there was significant association between positive relationships and involvement and job satisfaction and group performance in a group scenario. There was a significant association between group support and job satisfaction, but not performance

    Radicals in carbonaceous residue deposited on mordenite from methanol

    Get PDF
    It is shown that control of the degree of coking can lead to the observation of hyperfine structures in the carbonaceous residues deposited from methanol over mordenite (H-MOR) at temperatures relevant to the conversion of methanol to hydrocarbons. EPR measurements of the catalyst samples at various times on stream have been recorded, with a rich hyperfine splitting pattern observed in the early stages of the reaction. Interpretation of the EPR data with the aid of density functional theoretical calculations has afforded the first definitive assignment of the radical cations formed in high temperature coke. The results detail a shortlist of six species: 2,3/2,6/2,7-dimethylnaphthalenium, 2,3,6-trimethylnaphthalenium, 2,3,6,7-tetramethylnaphthalenium, and anthracenium radical cations whose proton hyperfine splitting profiles match the experimental spectra; 2,3,6,7-tetramethylnaphthalenium showed the best agreement. The observation of these particular isomers of polymethylnaphthalene suggest the formation of more highly branched polyaromatic species is less likely within the confines of the H-MOR 12-membered ring channel. These radicals formed when the catalyst is active may constitute key intermediates in the conversion of methanol to light olefins

    FerriTag is a new genetically-encoded inducible tag for correlative light-electron microscopy

    Get PDF
    A current challenge is to develop tags to precisely visualize proteins in cells by light and electron microscopy. Here, we introduce FerriTag, a genetically-encoded chemically-inducible tag for correlative light-electron microscopy. FerriTag is a fluorescent recombinant electron-dense ferritin particle that can be attached to a protein-of-interest using rapamycin-induced heterodimerization. We demonstrate the utility of FerriTag for correlative light-electron microscopy by labeling proteins associated with various intracellular structures including mitochondria, plasma membrane, and clathrin-coated pits and vesicles. FerriTagging has a good signal-to-noise ratio and a labeling resolution of approximately 10 nm. We demonstrate how FerriTagging allows nanoscale mapping of protein location relative to a subcellular structure, and use it to detail the distribution and conformation of huntingtin-interacting protein 1 related (HIP1R) in and around clathrin-coated pits

    Resonant Characteristics of Rectangular Microcantilevers Vibrating Torsionally in Viscous Liquid Media

    Get PDF
    The resonant characteristics of rectangular microcantilevers vibrating in the torsional mode in viscous liquid media are investigated. The hydrodynamic load (torque per unit length) on the vibrating beam due to the liquid was first determined using a finite element model. An analytical expression of the hydrodynamic function in terms of the Reynolds number and aspect ratio, h/b (with thickness, h, and width, b) was then obtained by fitting the numerical results. This allowed for the resonance frequency and quality factor to be investigated as functions of both beam geometry and medium properties. Moreover, the effects of the aspect ratio on the cross-section\u27s torsional constant, K, which affects the microcantilever\u27s torsional stiffness, and on its polar moment of inertia, Jp, which is associated with the beam\u27s rotational inertia, are also considered when obtaining the resonance frequency and quality factor. Compared with microcantilevers under out-of-plane (transverse) flexural vibration, the results show that microcantilevers that vibrate in their 1st torsional or 1st in-plane (lateral) flexural resonant modes have higher resonance frequency and quality factor. The increase in resonance frequency and quality factor results in higher mass sensitivity and reduced frequency noise, respectively. The improvement in the sensitivity and quality factor are expected to yield much lower limits of detection in liquid-phase chemical sensing applications

    Resonant Characteristics of Rectangular Hammerhead Microcantilevers Vibrating Laterally in Viscous Liquid Media

    Get PDF
    The resonant characteristics of laterally vibrating rectangular hammerhead microcantilevers in viscous liquid media are investigated. The rectangular hammerhead microcantilever is modeled as an Euler-Bernoulli beam (stem) and a rigid body (head). A modified semi-analytical expression for the hydrodynamic function in terms of the Reynolds number, Re, and aspect ratio, h/b, is proposed to rapidly evaluate the sensing characteristics. Using this expression, the resonance frequency, quality factor and normalized surface mass sensitivity are investigated as a function of the dimensions of the microcantilever and liquid properties. Guidelines for design of hammerhead microcantilever geometry are proposed to achieve efficient sensing platforms for liquid-phase operation. The improvement in the sensing area and characteristics are expected to yield higher sensitivity of detection and improved signal-to-noise ratio in liquid-phase chemical sensing applications
    • …
    corecore