8 research outputs found

    Rapid evolution and gene expression : a rapidly-evolving Mendelian trait that silences field crickets has widespread effects on mRNA and protein expression

    Get PDF
    A major advance in modern evolutionary biology is the ability to start linking phenotypic evolution in the wild with genomic changes that underlie that evolution. We capitalised on a rapidly-evolving Hawaiian population of crickets (Teleogryllus oceanicus) to test hypotheses about the genomic consequences of a recent Mendelian mutation of large effect which disrupts the development of sound-producing structures on male forewings. The resulting silent phenotype, flatwing, persists because of natural selection imposed by an acoustically-orienting parasitoid, but it interferes with mate attraction. We examined gene expression differences in developing wing buds of wild-type and flatwing male crickets using RNA-seq and quantitative proteomics. Most differentially expressed (DE) transcripts were down-regulated in flatwing males (625 up vs. 1716 down), whereas up and down-regulated proteins were equally represented (30 up and 34 down). Differences between morphs were clearly not restricted to a single pathway, and we recovered annotations associated with a broad array of functions that would not be predicted a priori. Using a candidate gene detection test based on homology we identified 30% of putative Drosophila wing development genes in the cricket transcriptome, but only 10% were DE. In addition to wing related annotations, endocrine pathways and several biological processes such as reproduction, immunity and locomotion were DE in the mutant crickets at both biological levels. Our results illuminate the breadth of genetic pathways that are potentially affected in the early stages of adaptation.PostprintPeer reviewe

    Rapid evolution and gene expression:a rapidly-evolving Mendelian trait that silences field crickets has widespread effects on mRNA and protein expression

    No full text
    A major advance in modern evolutionary biology is the ability to start linking phenotypic evolution in the wild with genomic changes that underlie that evolution. We capitalised on a rapidly-evolving Hawaiian population of crickets (Teleogryllus oceanicus) to test hypotheses about the genomic consequences of a recent Mendelian mutation of large effect which disrupts the development of sound-producing structures on male forewings. The resulting silent phenotype, flatwing, persists because of natural selection imposed by an acoustically-orienting parasitoid, but it interferes with mate attraction. We examined gene expression differences in developing wing buds of wild-type and flatwing male crickets using RNA-seq and quantitative proteomics. Most differentially expressed (DE) transcripts were down-regulated in flatwing males (625 up vs. 1716 down), whereas up and down-regulated proteins were equally represented (30 up and 34 down). Differences between morphs were clearly not restricted to a single pathway, and we recovered annotations associated with a broad array of functions that would not be predicted a priori. Using a candidate gene detection test based on homology we identified 30% of putative Drosophila wing development genes in the cricket transcriptome, but only 10% were DE. In addition to wing related annotations, endocrine pathways and several biological processes such as reproduction, immunity and locomotion were DE in the mutant crickets at both biological levels. Our results illuminate the breadth of genetic pathways that are potentially affected in the early stages of adaptation

    Construction of à la carte QconCAT protein standards for multiplexed quantification of user-specified target proteins

    No full text
    Abstract Background QconCATs are quantitative concatamers for proteomic applications that yield stoichiometric quantities of sets of stable isotope-labelled internal standards. However, changing a QconCAT design, for example, to replace poorly performing peptide standards has been a protracted process. Results We report a new approach to the assembly and construction of QconCATs, based on synthetic biology precepts of biobricks, making use of loop assembly to construct larger entities from individual biobricks. The basic building block (a Qbrick) is a segment of DNA that encodes two or more quantification peptides for a single protein, readily held in a repository as a library resource. These Qbricks are then assembled in a one tube ligation reaction that enforces the order of assembly, to yield short QconCATs that are useable for small quantification products. However, the DNA context of the short construct also allows a second cycle of loop assembly such that five different short QconCATs can be assembled into a longer QconCAT in a second, single tube ligation. From a library of Qbricks, a bespoke QconCAT can be assembled quickly and efficiently in a form suitable for expression and labelling in vivo or in vitro. Conclusions We refer to this approach as the ALACAT strategy as it permits à la carte design of quantification standards. ALACAT methodology is a major gain in flexibility of QconCAT implementation as it supports rapid editing and improvement of QconCATs and permits, for example, substitution of one peptide by another
    corecore