3,624 research outputs found

    Galactic extinction and Abell clusters

    Get PDF
    In this paper, we present the results of comparing the angular distribution of Abell clusters with Galactic HI measurements. For most subsamples of clusters considered, their positions on the sky appear to be anti-correlated with respect to the distribution of HI column densities. The statistical significance of these observed anti-correlations is a function of both richness and distance class, with the more distant and/or richest systems having the highest significance (~3 sigma). The lower richness, nearby clusters appear to be randomly distributed compared to the observed Galactic HI column density.Comment: 5 pages, uuencoded compressed postscript file. Figures included. Accepted by MNRA

    A new source detection algorithm using FDR

    Get PDF
    The False Discovery Rate (FDR) method has recently been described by Miller et al (2001), along with several examples of astrophysical applications. FDR is a new statistical procedure due to Benjamini and Hochberg (1995) for controlling the fraction of false positives when performing multiple hypothesis testing. The importance of this method to source detection algorithms is immediately clear. To explore the possibilities offered we have developed a new task for performing source detection in radio-telescope images, Sfind 2.0, which implements FDR. We compare Sfind 2.0 with two other source detection and measurement tasks, Imsad and SExtractor, and comment on several issues arising from the nature of the correlation between nearby pixels and the necessary assumption of the null hypothesis. The strong suggestion is made that implementing FDR as a threshold defining method in other existing source-detection tasks is easy and worthwhile. We show that the constraint on the fraction of false detections as specified by FDR holds true even for highly correlated and realistic images. For the detection of true sources, which are complex combinations of source-pixels, this constraint appears to be somewhat less strict. It is still reliable enough, however, for a priori estimates of the fraction of false source detections to be robust and realistic.Comment: 17 pages, 7 figures, accepted for publication by A

    The Las Campanas Distant Cluster Survey -- The Correlation Function

    Get PDF
    We present the first non-local (z>0.2) measurement of the cluster-cluster spatial correlation length, using data from the Las Campanas Distant Cluster Survey (LCDCS). We measure the angular correlation function for velocity-dispersion limited subsamples of the catalog at estimated redshifts of 0.35<z_{est}<0.575, and derive spatial correlation lengths for these clusters via the cosmological Limber equation. The correlation lengths that we measure for clusters in the LCDCS are consistent both with local results for the APM cluster catalog and with theoretical expectations based upon the Virgo Consortium Hubble Volume simulations and the analytic predictions. Despite samples containing over 100 clusters, our ability to discriminate between cosmological models is limited because of statistical uncertainty.Comment: 7 pages, 4 figures, accepted to ApJ (v571, May 20, 2002

    WFMOS - Sounding the Dark Cosmos

    Get PDF
    Vast sound waves traveling through the relativistic plasma during the first million years of the universe imprint a preferred scale in the density of matter. We now have the ability to detect this characteristic fingerprint in the clustering of galaxies at various redshifts and use it to measure the acceleration of the expansion of the Universe. The Wide-Field Multi-Object Spectrograph (WFMOS) would use this test to shed significant light on the true nature of dark energy, the mysterious source of this cosmic acceleration. WFMOS would also revolutionise studies of the kinematics of the Milky Way and provide deep insights into the clustering of galaxies at redshifts up to z~4. In this article we discuss the recent progress in large galaxy redshift surveys and detail how WFMOS will help unravel the mystery of dark energy.Comment: 6 pages, pure pdf. An introduction to WFMOS and Baryon Acoustic Oscillations for a general audienc

    The Butcher-Oemler Effect in High Redshift X-ray Selected Clusters

    Get PDF
    We are engaged in a wide-field, multi-colour imaging survey of X-ray selected clusters at intermediate and high redshift. We present blue fractions for the first 8 out of 29 clusters, covering almost a factor of 100 in X-ray luminosity. We find no correlation of blue fraction with redshift or X-ray luminosity. The lack of a correlation with LX_{X}, places strong constraints on the importance of ram-pressure stripping as a driver of the Butcher-Oemler effect.Comment: 4 pages, 4 figures, to be puplished in the proceedings of the ''Sesto 2001-Tracing Cosmic Evolution with Galaxy Clusters'', Sesto 3-6 July 2001, Italy, eds, Stefano Borgan

    An Isocurvature CDM Cosmogony. II. Observational Tests

    Full text link
    A companion paper presents a worked model for evolution through inflation to initial conditions for an isocurvature model for structure formation. It is shown here that the model is consistent with the available observational constraints that can be applied without the help of numerical simulations. The model gives an acceptable fit to the second moments of the angular fluctuations in the thermal background radiation and the second through fourth moments of the measured large-scale fluctuations in galaxy counts, within the possibly significant uncertainties in these measurements. The cluster mass function requires a rather low but observationally acceptable mass density, 0.1\lsim\Omega\lsim 0.2 in a cosmologically flat universe. Galaxies would be assembled earlier in this model than in the adiabatic version, an arguably good thing. Aspects of the predicted non-Gaussian character of the anisotropy of the thermal background radiation in this model are discussed.Comment: 14 pages, 3 postscript figures, uses aas2pp4.st

    Bi-large neutrino mixing and the Cabibbo angle

    Get PDF
    Recent measurements of the neutrino mixing angles cast doubt on the validity of the so-far popular tri-bimaximal mixing ansatz. We propose a parametrization for the neutrino mixing matrix where the reactor angle seeds the large solar and atmospheric mixing angles, equal to each other in first approximation. We suggest such bi-large mixing pattern as a model building standard, realized when the leading order value of the reactor angle equals the Cabibbo angle.Comment: 4 pages, 2 figs. v2: matches version appearing in Phys.Rev.D, rapid communication
    • …
    corecore