62 research outputs found

    The Effect of Novel Endophyte and Insecticide Seed Treatment on the Establishment of Long Rotation or Perennial Ryegrass Plants in the Presence of Adult Argentine Stem Weevil (\u3cem\u3eListronotus bonariensis\u3c/em\u3e)

    Get PDF
    Argentine stem weevil (Listronotus bonariensis (Kuschel)) is a recognised pasture pest throughout most regions of New Zealand including an increasing threat to the southern half of the South Island (Popay et al. 2011). Mitigation options for control of adult Argentine stem weevil (ASW) during establishment of ryegrass are available. The following study investigated the potential for seed infected with novel endophytic fungi Neotyphodium sp.(Clavicipitaceae: Hypocreales) and/or seed treated with systemic insecticide to improve the survivability of ryegrass seedlings in the presence of adult ASW in South Otago, New Zealand

    Frequent grazing by sheep reduced caucasian clover cover and rhizome mass in ryegrass pasture

    Get PDF
    The responses of hexaploid caucasian clover (Trifolium ambiguum) to four contrasting grazing regimes were compared with those of white clover (T. repens) in an endophytic (Neotyphodium lolii) hybrid ryegrass pasture on a fertile lowland site. After 2 years, frequent grazing (set stocking) by sheep reduced caucasian clover cover to 10% compared with 25.5% in infrequent grazing (rotational grazing) treatments (mean spelling time 25 days). Similarly, frequent grazing reduced caucasian clover rhizome plus root dry weight (780 kg DM/ha when sampled to 100 mm depth in frequently grazed plots, compared with 3220 kg DM/ha for infrequent). Under frequent grazing treatments, mean white clover cover was 21%, under infrequent hard grazing it was 26% and under lax infrequent grazing it was 14%. The reduction in ryegrass tiller population from 5720/m² in the infrequently and laxly grazed treatments to 4150/ m² in the frequently hard grazed pastures indicated the severity of that hard grazed treatment. These results show that in lowland ryegrass pastures on high fertility sites, the stoloniferous growth form of white clover may be superior to the rhizomatous strategy of caucasian clover when grazing by sheep is frequent throughout spring, summer and autumn

    Exercise alters the immune profile in Tg2576 Alzheimer mice toward a response coincident with improved cognitive performance and decreased amyloid

    Get PDF
    Background: Inflammation is associated with A beta pathology in Alzheimer's disease (AD) and transgenic AD models. Previously, it has been demonstrated that chronic stimulation of the immune response induces pro-inflammatory cytokines IL-1 beta and TNF-alpha which contribute to neurodegeneration. However, recent evidence has shown that inducing the adaptive immune response reduces A beta pathology and is neuroprotective. Low concentrations of IFN-gamma modulate the adaptive immune response by directing microglia to differentiate to antigen presenting cells. Our objective was to determine if exercise could induce a shift from the immune profile in aged (17-19 months) Tg2576 mice to a response that reduces A beta pathology. Methods: TG (n = 29) and WT (n = 27) mice were divided into sedentary (SED) and exercised (RUN) groups. RUN animals were provided an in-cage running wheel for 3 weeks. Tissue was harvested and hippocampus and cortex dissected out. Quantitative data was analyzed using 2 x 2 ANOVA and student's t-tests. Results: IL-1 beta and TNF-alpha were significantly greater in hippocampi from sedentary Tg2576 (TG(SED)) mice than in wildtype (WT(SED)) (p = 0.04, p = 0.006). Immune response proteins IFN-gamma and MIP-1 alpha are lower in TG(SED) mice than in WT(SED) (p = 0.03, p = 0.07). Following three weeks of voluntary wheel running, IL-1 beta and TNF-alpha decreased to levels indistinguishable from WT. Concurrently, IFN-gamma. and MIP-1 alpha increased in TG(RUN). Increased CD40 and MHCII, markers of antigen presentation, were observed in TG(RUN) animals compared to TG(SED), as well as CD11c staining in and around plaques and vasculature. Additional vascular reactivity observed in TG(RUN) is consistent with an alternative activation immune pathway, involving perivascular macrophages. Significant decreases in soluble A beta(40) (p = 0.01) and soluble fibrillar A beta (p = 0.01) were observed in the exercised transgenic animals. Conclusion: Exercise shifts the immune response from innate to an adaptive or alternative response. This shift in immune response coincides with a decrease in A beta in advanced pathological states

    First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform

    Get PDF
    The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber with an active volume of 7.2× 6.1× 7.0 m3. It is installed at the CERN Neutrino Platform in a specially-constructed beam that delivers charged pions, kaons, protons, muons and electrons with momenta in the range 0.3 GeV/c to 7 GeV/c. Beam line instrumentation provides accurate momentum measurements and particle identification. The ProtoDUNE-SP detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment, and it incorporates full-size components as designed for that module. This paper describes the beam line, the time projection chamber, the photon detectors, the cosmic-ray tagger, the signal processing and particle reconstruction. It presents the first results on ProtoDUNE-SP\u27s performance, including noise and gain measurements, dE/dx calibration for muons, protons, pions and electrons, drift electron lifetime measurements, and photon detector noise, signal sensitivity and time resolution measurements. The measured values meet or exceed the specifications for the DUNE far detector, in several cases by large margins. ProtoDUNE-SP\u27s successful operation starting in 2018 and its production of large samples of high-quality data demonstrate the effectiveness of the single-phase far detector design

    Long-baseline neutrino oscillation physics potential of the DUNE experiment

    Get PDF
    The sensitivity of the Deep Underground Neutrino Experiment (DUNE) to neutrino oscillation is determined, based on a full simulation, reconstruction, and event selection of the far detector and a full simulation and parameterized analysis of the near detector. Detailed uncertainties due to the flux prediction, neutrino interaction model, and detector effects are included. DUNE will resolve the neutrino mass ordering to a precision of 5σ, for all ΑCP values, after 2 years of running with the nominal detector design and beam configuration. It has the potential to observe charge-parity violation in the neutrino sector to a precision of 3σ (5σ) after an exposure of 5 (10) years, for 50% of all ΑCP values. It will also make precise measurements of other parameters governing long-baseline neutrino oscillation, and after an exposure of 15 years will achieve a similar sensitivity to sin22θ13 to current reactor experiments

    Prospects for beyond the Standard Model physics searches at the Deep Underground Neutrino Experiment

    Get PDF
    The Deep Underground Neutrino Experiment (DUNE) will be a powerful tool for a variety of physics topics. The high-intensity proton beams provide a large neutrino flux, sampled by a near detector system consisting of a combination of capable precision detectors, and by the massive far detector system located deep underground. This configuration sets up DUNE as a machine for discovery, as it enables opportunities not only to perform precision neutrino measurements that may uncover deviations from the present three-flavor mixing paradigm, but also to discover new particles and unveil new interactions and symmetries beyond those predicted in the Standard Model (SM). Of the many potential beyond the Standard Model (BSM) topics DUNE will probe, this paper presents a selection of studies quantifying DUNE’s sensitivities to sterile neutrino mixing, heavy neutral leptons, non-standard interactions, CPT symmetry violation, Lorentz invariance violation, neutrino trident production, dark matter from both beam induced and cosmogenic sources, baryon number violation, and other new physics topics that complement those at high-energy colliders and significantly extend the present reach

    Volume I. Introduction to DUNE

    Get PDF
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. This TDR is intended to justify the technical choices for the far detector that flow down from the high-level physics goals through requirements at all levels of the Project. Volume I contains an executive summary that introduces the DUNE science program, the far detector and the strategy for its modular designs, and the organization and management of the Project. The remainder of Volume I provides more detail on the science program that drives the choice of detector technologies and on the technologies themselves. It also introduces the designs for the DUNE near detector and the DUNE computing model, for which DUNE is planning design reports. Volume II of this TDR describes DUNE\u27s physics program in detail. Volume III describes the technical coordination required for the far detector design, construction, installation, and integration, and its organizational structure. Volume IV describes the single-phase far detector technology. A planned Volume V will describe the dual-phase technology

    Canagliflozin and renal outcomes in type 2 diabetes and nephropathy

    Get PDF
    BACKGROUND Type 2 diabetes mellitus is the leading cause of kidney failure worldwide, but few effective long-term treatments are available. In cardiovascular trials of inhibitors of sodium–glucose cotransporter 2 (SGLT2), exploratory results have suggested that such drugs may improve renal outcomes in patients with type 2 diabetes. METHODS In this double-blind, randomized trial, we assigned patients with type 2 diabetes and albuminuric chronic kidney disease to receive canagliflozin, an oral SGLT2 inhibitor, at a dose of 100 mg daily or placebo. All the patients had an estimated glomerular filtration rate (GFR) of 30 to <90 ml per minute per 1.73 m2 of body-surface area and albuminuria (ratio of albumin [mg] to creatinine [g], >300 to 5000) and were treated with renin–angiotensin system blockade. The primary outcome was a composite of end-stage kidney disease (dialysis, transplantation, or a sustained estimated GFR of <15 ml per minute per 1.73 m2), a doubling of the serum creatinine level, or death from renal or cardiovascular causes. Prespecified secondary outcomes were tested hierarchically. RESULTS The trial was stopped early after a planned interim analysis on the recommendation of the data and safety monitoring committee. At that time, 4401 patients had undergone randomization, with a median follow-up of 2.62 years. The relative risk of the primary outcome was 30% lower in the canagliflozin group than in the placebo group, with event rates of 43.2 and 61.2 per 1000 patient-years, respectively (hazard ratio, 0.70; 95% confidence interval [CI], 0.59 to 0.82; P=0.00001). The relative risk of the renal-specific composite of end-stage kidney disease, a doubling of the creatinine level, or death from renal causes was lower by 34% (hazard ratio, 0.66; 95% CI, 0.53 to 0.81; P<0.001), and the relative risk of end-stage kidney disease was lower by 32% (hazard ratio, 0.68; 95% CI, 0.54 to 0.86; P=0.002). The canagliflozin group also had a lower risk of cardiovascular death, myocardial infarction, or stroke (hazard ratio, 0.80; 95% CI, 0.67 to 0.95; P=0.01) and hospitalization for heart failure (hazard ratio, 0.61; 95% CI, 0.47 to 0.80; P<0.001). There were no significant differences in rates of amputation or fracture. CONCLUSIONS In patients with type 2 diabetes and kidney disease, the risk of kidney failure and cardiovascular events was lower in the canagliflozin group than in the placebo group at a median follow-up of 2.62 years
    corecore