60 research outputs found

    Endothelial cell CD36 deficiency prevents normal angiogenesis and vascular repair

    Get PDF
    Endothelial cells (ECs) maintain vascular integrity and mediate vascular repair and angiogenesis, by which new blood vessels are formed from pre-existing blood vessels. Hyperglycemia has been shown to increase EC angiogenic potential. However, few studies have investigated effects of fatty acids (FAs) on EC angiogenesis. Cluster of differentiation 36 (CD36) is a FA transporter expressed by ECs, but its role in EC proliferation, migration, and angiogenesis is unknown. We sought to determine if circulating FAs regulate angiogenic function in a CD36-dependent manner. CD36-dependent effects of FAs on EC proliferation and migration of mouse heart ECs (MHECs) and lung ECs (MLECs) were studied. We used both silencing RNA and antisense oligonucleotides to reduce CD36 expression. Oleic acid (OA) did not affect EC proliferation, but significantly increased migration of ECs in wound healing experiments. CD36 knockdown prevented OA-induced increases in wound healing potential. In EC transwell migration experiments, OA increased recruitment and migration of ECs, an effect abolished by CD36 knockdown. Phospho-AMP-activated protein kinase (AMPK) increased in MHECs exposed to OA in a CD36-dependent manner. To test whethe

    Contourlet textual features: Improving the diagnosis of solitary pulmonary nodules in two dimensional ct images

    Get PDF
    Materials and Methods: A total of 6,299 CT images were acquired from 336 patients, with 1,454 benign pulmonary nodule images from 84 patients (50 male, 34 female) and 4,845 malignant from 252 patients (150 male, 102 female). Further to this, nineteen patient information categories, which included seven demographic parameters and twelve morphological features, were also collected. A contourlet was used to extract fourteen types of textural features. These were then used to establish three support vector machine models. One comprised a database constructed of nineteen collected patient information categories, another included contourlet textural features and the third one contained both sets of information. Ten-fold cross-validation was used to evaluate the diagnosis results for the three databases, with sensitivity, specificity, accuracy, the area under the curve (AUC), precision, Youden index, and F-measure were used as the assessment criteria. In addition, the synthetic minority over-sampling technique (SMOTE) was used to preprocess the unbalanced data.Results: Using a database containing textural features and patient information, sensitivity, specificity, accuracy, AUC, precision, Youden index, and F-measure were: 0.95, 0.71, 0.89, 0.89, 0.92, 0.66, and 0.93 respectively. These results were higher than results derived using the database without textural features (0.82, 0.47, 0.74, 0.67, 0.84, 0.29, and 0.83 respectively) as well as the database comprising only textural features (0.81, 0.64, 0.67, 0.72, 0.88, 0.44, and 0.85 respectively). Using the SMOTE as a pre-processing procedure, new balanced database generated, including observations of 5,816 benign ROIs and 5,815 malignant ROIs, and accuracy was 0.93.Objective: To determine the value of contourlet textural features obtained from solitary pulmonary nodules in two dimensional CT images used in diagnoses of lung cancer. Copyright:Conclusion: Our results indicate that the combined contourlet textural features of solitary pulmonary nodules in CT images with patient profile information could potentially improve the diagnosis of lung cancer

    The genetic correlation and causal association between key factors that influence vascular calcification and cardiovascular disease incidence

    Get PDF
    Background: Serum calcium (Ca), vitamin D (VD), and vitamin K (VK) levels are key determinants of vascular calcification, which itself impacts cardiovascular disease (CVD) risk. The specific relationships between the levels of these different compounds and particular forms of CVD, however, remain to be fully defined. Objective: This study was designed to explore the associations between these serum levels and CVDs with the goal of identifying natural interventions capable of controlling vascular calcification and thereby protecting against CVD pathogenesis, extending the healthy lifespan of at-risk individuals.Methods: Linkage disequilibrium score (LDSC) regression and a two-sample Mendelian randomization (MR) framework were leveraged to systematically examine the causal interplay between these serum levels and nine forms of CVD, as well as longevity through the use of large publically accessible Genome-Wide Association Studies (GWAS) datasets. The optimal concentrations of serum Ca and VD to lower CVD risk were examined through a restrictive cubic spline (RCS) approach.Results: After Bonferroni correction, the positive genetic correlations were observed between serum Ca levels and myocardial infarction (MI) (p = 1.356E–04), as well as coronary artery disease (CAD) (p = 3.601E–04). Negative genetic correlations were detected between levels of VD and CAD (p = 0.035), while elevated VK1 concentrations were causally associated with heart failure (HF) [odds ratios (OR) per 1-standard deviation (SD) increase: 1.044], large artery stroke (LAS) (OR per 1-SD increase: 1.172), and all stroke (AS) (OR per 1-SD increase: 1.041). Higher serum Ca concentrations (OR per 1-SD increase: 0.865) and VD levels (OR per 1-SD increase: 0.777) were causally associated with reduced odds of longevity. These findings remained consistent in sensitivity analyses, and serum Ca and VD concentrations of 2.376 mmol/L and 46.8 nmol/L, respectively, were associated with a lower CVD risk (p &lt; 0.001). Conclusion: Our findings support a genetic correlation between serum Ca and VD and CVD risk, and a causal relationship between VK1 levels and CVD risk. The optimal serum Ca (2.376 mmol/L) and VD levels (46.8 nmol/L) can reduce cardiovascular risk.</p

    The genetic correlation and causal association between key factors that influence vascular calcification and cardiovascular disease incidence

    Get PDF
    Background: Serum calcium (Ca), vitamin D (VD), and vitamin K (VK) levels are key determinants of vascular calcification, which itself impacts cardiovascular disease (CVD) risk. The specific relationships between the levels of these different compounds and particular forms of CVD, however, remain to be fully defined. Objective: This study was designed to explore the associations between these serum levels and CVDs with the goal of identifying natural interventions capable of controlling vascular calcification and thereby protecting against CVD pathogenesis, extending the healthy lifespan of at-risk individuals.Methods: Linkage disequilibrium score (LDSC) regression and a two-sample Mendelian randomization (MR) framework were leveraged to systematically examine the causal interplay between these serum levels and nine forms of CVD, as well as longevity through the use of large publically accessible Genome-Wide Association Studies (GWAS) datasets. The optimal concentrations of serum Ca and VD to lower CVD risk were examined through a restrictive cubic spline (RCS) approach.Results: After Bonferroni correction, the positive genetic correlations were observed between serum Ca levels and myocardial infarction (MI) (p = 1.356E–04), as well as coronary artery disease (CAD) (p = 3.601E–04). Negative genetic correlations were detected between levels of VD and CAD (p = 0.035), while elevated VK1 concentrations were causally associated with heart failure (HF) [odds ratios (OR) per 1-standard deviation (SD) increase: 1.044], large artery stroke (LAS) (OR per 1-SD increase: 1.172), and all stroke (AS) (OR per 1-SD increase: 1.041). Higher serum Ca concentrations (OR per 1-SD increase: 0.865) and VD levels (OR per 1-SD increase: 0.777) were causally associated with reduced odds of longevity. These findings remained consistent in sensitivity analyses, and serum Ca and VD concentrations of 2.376 mmol/L and 46.8 nmol/L, respectively, were associated with a lower CVD risk (p &lt; 0.001). Conclusion: Our findings support a genetic correlation between serum Ca and VD and CVD risk, and a causal relationship between VK1 levels and CVD risk. The optimal serum Ca (2.376 mmol/L) and VD levels (46.8 nmol/L) can reduce cardiovascular risk.</p

    The genetic correlation and causal association between key factors that influence vascular calcification and cardiovascular disease incidence

    Get PDF
    Background: Serum calcium (Ca), vitamin D (VD), and vitamin K (VK) levels are key determinants of vascular calcification, which itself impacts cardiovascular disease (CVD) risk. The specific relationships between the levels of these different compounds and particular forms of CVD, however, remain to be fully defined. Objective: This study was designed to explore the associations between these serum levels and CVDs with the goal of identifying natural interventions capable of controlling vascular calcification and thereby protecting against CVD pathogenesis, extending the healthy lifespan of at-risk individuals.Methods: Linkage disequilibrium score (LDSC) regression and a two-sample Mendelian randomization (MR) framework were leveraged to systematically examine the causal interplay between these serum levels and nine forms of CVD, as well as longevity through the use of large publically accessible Genome-Wide Association Studies (GWAS) datasets. The optimal concentrations of serum Ca and VD to lower CVD risk were examined through a restrictive cubic spline (RCS) approach.Results: After Bonferroni correction, the positive genetic correlations were observed between serum Ca levels and myocardial infarction (MI) (p = 1.356E–04), as well as coronary artery disease (CAD) (p = 3.601E–04). Negative genetic correlations were detected between levels of VD and CAD (p = 0.035), while elevated VK1 concentrations were causally associated with heart failure (HF) [odds ratios (OR) per 1-standard deviation (SD) increase: 1.044], large artery stroke (LAS) (OR per 1-SD increase: 1.172), and all stroke (AS) (OR per 1-SD increase: 1.041). Higher serum Ca concentrations (OR per 1-SD increase: 0.865) and VD levels (OR per 1-SD increase: 0.777) were causally associated with reduced odds of longevity. These findings remained consistent in sensitivity analyses, and serum Ca and VD concentrations of 2.376 mmol/L and 46.8 nmol/L, respectively, were associated with a lower CVD risk (p &lt; 0.001). Conclusion: Our findings support a genetic correlation between serum Ca and VD and CVD risk, and a causal relationship between VK1 levels and CVD risk. The optimal serum Ca (2.376 mmol/L) and VD levels (46.8 nmol/L) can reduce cardiovascular risk.</p

    The genetic correlation and causal association between key factors that influence vascular calcification and cardiovascular disease incidence

    Get PDF
    Background: Serum calcium (Ca), vitamin D (VD), and vitamin K (VK) levels are key determinants of vascular calcification, which itself impacts cardiovascular disease (CVD) risk. The specific relationships between the levels of these different compounds and particular forms of CVD, however, remain to be fully defined. Objective: This study was designed to explore the associations between these serum levels and CVDs with the goal of identifying natural interventions capable of controlling vascular calcification and thereby protecting against CVD pathogenesis, extending the healthy lifespan of at-risk individuals.Methods: Linkage disequilibrium score (LDSC) regression and a two-sample Mendelian randomization (MR) framework were leveraged to systematically examine the causal interplay between these serum levels and nine forms of CVD, as well as longevity through the use of large publically accessible Genome-Wide Association Studies (GWAS) datasets. The optimal concentrations of serum Ca and VD to lower CVD risk were examined through a restrictive cubic spline (RCS) approach.Results: After Bonferroni correction, the positive genetic correlations were observed between serum Ca levels and myocardial infarction (MI) (p = 1.356E–04), as well as coronary artery disease (CAD) (p = 3.601E–04). Negative genetic correlations were detected between levels of VD and CAD (p = 0.035), while elevated VK1 concentrations were causally associated with heart failure (HF) [odds ratios (OR) per 1-standard deviation (SD) increase: 1.044], large artery stroke (LAS) (OR per 1-SD increase: 1.172), and all stroke (AS) (OR per 1-SD increase: 1.041). Higher serum Ca concentrations (OR per 1-SD increase: 0.865) and VD levels (OR per 1-SD increase: 0.777) were causally associated with reduced odds of longevity. These findings remained consistent in sensitivity analyses, and serum Ca and VD concentrations of 2.376 mmol/L and 46.8 nmol/L, respectively, were associated with a lower CVD risk (p &lt; 0.001). Conclusion: Our findings support a genetic correlation between serum Ca and VD and CVD risk, and a causal relationship between VK1 levels and CVD risk. The optimal serum Ca (2.376 mmol/L) and VD levels (46.8 nmol/L) can reduce cardiovascular risk.</p

    The genetic correlation and causal association between key factors that influence vascular calcification and cardiovascular disease incidence

    Get PDF
    Background: Serum calcium (Ca), vitamin D (VD), and vitamin K (VK) levels are key determinants of vascular calcification, which itself impacts cardiovascular disease (CVD) risk. The specific relationships between the levels of these different compounds and particular forms of CVD, however, remain to be fully defined. Objective: This study was designed to explore the associations between these serum levels and CVDs with the goal of identifying natural interventions capable of controlling vascular calcification and thereby protecting against CVD pathogenesis, extending the healthy lifespan of at-risk individuals.Methods: Linkage disequilibrium score (LDSC) regression and a two-sample Mendelian randomization (MR) framework were leveraged to systematically examine the causal interplay between these serum levels and nine forms of CVD, as well as longevity through the use of large publically accessible Genome-Wide Association Studies (GWAS) datasets. The optimal concentrations of serum Ca and VD to lower CVD risk were examined through a restrictive cubic spline (RCS) approach.Results: After Bonferroni correction, the positive genetic correlations were observed between serum Ca levels and myocardial infarction (MI) (p = 1.356E–04), as well as coronary artery disease (CAD) (p = 3.601E–04). Negative genetic correlations were detected between levels of VD and CAD (p = 0.035), while elevated VK1 concentrations were causally associated with heart failure (HF) [odds ratios (OR) per 1-standard deviation (SD) increase: 1.044], large artery stroke (LAS) (OR per 1-SD increase: 1.172), and all stroke (AS) (OR per 1-SD increase: 1.041). Higher serum Ca concentrations (OR per 1-SD increase: 0.865) and VD levels (OR per 1-SD increase: 0.777) were causally associated with reduced odds of longevity. These findings remained consistent in sensitivity analyses, and serum Ca and VD concentrations of 2.376 mmol/L and 46.8 nmol/L, respectively, were associated with a lower CVD risk (p &lt; 0.001). Conclusion: Our findings support a genetic correlation between serum Ca and VD and CVD risk, and a causal relationship between VK1 levels and CVD risk. The optimal serum Ca (2.376 mmol/L) and VD levels (46.8 nmol/L) can reduce cardiovascular risk.</p

    The genetic correlation and causal association between key factors that influence vascular calcification and cardiovascular disease incidence

    Get PDF
    Background: Serum calcium (Ca), vitamin D (VD), and vitamin K (VK) levels are key determinants of vascular calcification, which itself impacts cardiovascular disease (CVD) risk. The specific relationships between the levels of these different compounds and particular forms of CVD, however, remain to be fully defined. Objective: This study was designed to explore the associations between these serum levels and CVDs with the goal of identifying natural interventions capable of controlling vascular calcification and thereby protecting against CVD pathogenesis, extending the healthy lifespan of at-risk individuals.Methods: Linkage disequilibrium score (LDSC) regression and a two-sample Mendelian randomization (MR) framework were leveraged to systematically examine the causal interplay between these serum levels and nine forms of CVD, as well as longevity through the use of large publically accessible Genome-Wide Association Studies (GWAS) datasets. The optimal concentrations of serum Ca and VD to lower CVD risk were examined through a restrictive cubic spline (RCS) approach.Results: After Bonferroni correction, the positive genetic correlations were observed between serum Ca levels and myocardial infarction (MI) (p = 1.356E–04), as well as coronary artery disease (CAD) (p = 3.601E–04). Negative genetic correlations were detected between levels of VD and CAD (p = 0.035), while elevated VK1 concentrations were causally associated with heart failure (HF) [odds ratios (OR) per 1-standard deviation (SD) increase: 1.044], large artery stroke (LAS) (OR per 1-SD increase: 1.172), and all stroke (AS) (OR per 1-SD increase: 1.041). Higher serum Ca concentrations (OR per 1-SD increase: 0.865) and VD levels (OR per 1-SD increase: 0.777) were causally associated with reduced odds of longevity. These findings remained consistent in sensitivity analyses, and serum Ca and VD concentrations of 2.376 mmol/L and 46.8 nmol/L, respectively, were associated with a lower CVD risk (p &lt; 0.001). Conclusion: Our findings support a genetic correlation between serum Ca and VD and CVD risk, and a causal relationship between VK1 levels and CVD risk. The optimal serum Ca (2.376 mmol/L) and VD levels (46.8 nmol/L) can reduce cardiovascular risk.</p
    • …
    corecore