17 research outputs found

    Loss of ATF3 exacerbates liver damage through the activation of mTOR/p70S6K/ HIF-1α signaling pathway in liver inflammatory injury.

    Get PDF
    Activating transcription factor 3 (ATF3) is a stress-induced transcription factor that plays important roles in regulating immune and metabolic homeostasis. Activation of the mechanistic target of rapamycin (mTOR) and hypoxia-inducible factor (HIF) transcription factors are crucial for the regulation of immune cell function. Here, we investigated the mechanism by which the ATF3/mTOR/HIF-1 axis regulates immune responses in a liver ischemia/reperfusion injury (IRI) model. Deletion of ATF3 exacerbated liver damage, as evidenced by increased levels of serum ALT, intrahepatic macrophage/neutrophil trafficking, hepatocellular apoptosis, and the upregulation of pro-inflammatory mediators. ATF3 deficiency promoted mTOR and p70S6K phosphorylation, activated high mobility group box 1 (HMGB1) and TLR4, inhibited prolyl-hydroxylase 1 (PHD1), and increased HIF-1α activity, leading to Foxp3 downregulation and RORγt and IL-17A upregulation in IRI livers. Blocking mTOR or p70S6K in ATF3 knockout (KO) mice or bone marrow-derived macrophages (BMMs) downregulated HMGB1, TLR4, and HIF-1α and upregulated PHD1, increasing Foxp3 and decreasing IL-17A levels in vitro. Silencing of HIF-1α in ATF3 KO mice ameliorated IRI-induced liver damage in parallel with the downregulation of IL-17A in ATF3-deficient mice. These findings demonstrated that ATF3 deficiency activated mTOR/p70S6K/HIF-1α signaling, which was crucial for the modulation of TLR4-driven inflammatory responses and T cell development. The present study provides potential therapeutic targets for the treatment of liver IRI followed by liver transplantation

    MicroRNA-873 Promotes Cell Proliferation, Migration, and Invasion by Directly Targeting TSLC1 in Hepatocellular Carcinoma

    No full text
    Background/Aims: Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and has the third highest mortality rate among all cancers. MicroRNAs are a class of endogenous, single-stranded short noncoding RNAs. The purpose of this study was to study the role of microRNA-873 in HCC. Methods: The expression of miRNA-873 and tumor suppressor in lung cancer 1 (TSLC1) in HCC tissues and cell lines was detected by real-time quantitative RT-PCR (RT-qPCR) or western blot. A CCK-8 assay was used to examine cell proliferation; flow cytometry was used to assess the cell cycle; the Transwell migration assay was used to test for metastasis. Luciferase assays were performed to assess whether TSLC1 was a novel target of miRNA-873. Results: We showed that miRNA-873 was upregulated in HCC tissues and cell lines compared with the normal control. Knockdown of miRNA-873 inhibited the growth and metastasis of HepG2 and accelerated G1 phase arrest, while overexpression of miRNA-873 had the opposite effect. The dual-luciferase reporter assays revealed that TSLC1 was a novel target of miRNA-873. Further study showed that TSLC1 was decreased in HCC tissues and cell lines. There was a negative correlation between the expression levels of TSLC1 and miRNA-873. The effect of miRNA-873 overexpression was neutralized by TSLC1. We also found that miRNA-873 activated the PI3K/AKT/mTOR signaling pathway and promoted HCC. Conclusions: Our data demonstrated that miRNA-873 promoted HCC progression by targeting TSLC1 and provided a new target for the therapy of HCC

    Biomimetic pheomelanin to unravel the electronic, molecular and supramolecular structure of the natural product

    No full text
    Herein, we investigate synthetic routes to a close mimic of natural pheomelanin. Three different oxidative polymerization routes were attempted to generate synthetic pheomelanin, each giving rise to structurally dissimilar materials. Among them, the route employing 5-cysteinyl-dihydroxyphenylalanine (5-CD) as a monomer was verified as a close analogue of extracted pheomelanin from humans and birds. The resulting biomimetic and natural pheomelanins were compared via various techniques, including solid-state Nuclear Magnetic Resonance (ssNMR) and Electron Paramagnetic Resonance (EPR). This synthetic pheomelanin closely mimics the structure of natural pheomelanin as determined by parallel characterization of pheomelanin extracted from multiple biological sources. With a good synthetic biomimetic material in hand, we describe cation-pi interactions as an important driving force for pheomelanogenesis, further advancing our fundamental understanding of this important biological pigment

    Structurally colored inks from synthetic melanin-based crosslinked supraparticles

    No full text
    Structurally colored supraparticles, formed from dispersed nanoparticle building blocks through self-assembly, have tremendous potential for applications in displays, coatings, paints, inks, and cosmetics. Mechanical stability and solvent compatibility of supraparticles is critical in these applications. Here, we describe the scalable synthesis of supraparticles via the assembly of nanoparticles composed of synthetic melanin cores with silica shells (SM@SiO2 NPs) using a vortex-assisted reverse emulsion method. We use a hydrogen-bond driven crosslinking strategy employing polyethylene glycol to lock the SM@SiO2 NP building blocks together. This approach yields multicolor photonic supraparticles stable both in organic and aqueous solvents and in the dry state. Supraparticles crosslinked via 4-arm PEG2k withstand at least a 10-fold increase in compressive force when compared to noncrosslinked versions. Capitalizing on the enhanced stability of crosslinked supraparticles, we directly blend them with painting media and apply them as inks

    Selenomelanin : an abiotic selenium analogue of pheomelanin

    No full text
    Melanins are a family of heterogeneous biopolymers found ubiquitously across plant, animal, bacterial, and fungal kingdoms where they act variously as pigments and as radiation protection agents. There exist five multifunctional yet structurally and biosynthetically incompletely understood varieties of melanin: eumelanin, neuromelanin, pyomelanin, allomelanin, and pheomelanin. Although eumelanin and allomelanin have been the focus of most radiation protection studies to date, some research suggests that pheomelanin has a better absorption coefficient for X-rays than eumelanin. We reasoned that if a selenium enriched melanin existed, it would be a better X-ray protector than the sulfur-containing pheomelanin because the X-ray absorption coefficient is proportional to the fourth power of the atomic number (Z). Notably, selenium is an essential micronutrient, with the amino acid selenocysteine being genetically encoded in 25 natural human proteins. Therefore, we hypothesize that selenomelanin exists in nature, where it provides superior ionizing radiation protection to organisms compared to known melanins. Here we introduce this novel selenium analogue of pheomelanin through chemical and biosynthetic routes using selenocystine as a feedstock. The resulting selenomelanin is a structural mimic of pheomelanin. We found selenomelanin effectively prevented neonatal human epidermal keratinocytes (NHEK) from G2/M phase arrest under high-dose X-ray irradiation. Provocatively, this beneficial role of selenomelanin points to it as a sixth variety of yet to be discovered natural melanin
    corecore