10 research outputs found
Memory-Efficient Deep Salient Object Segmentation Networks on Gridized Superpixels
Computer vision algorithms with pixel-wise labeling tasks, such as semantic
segmentation and salient object detection, have gone through a significant
accuracy increase with the incorporation of deep learning. Deep segmentation
methods slightly modify and fine-tune pre-trained networks that have hundreds
of millions of parameters. In this work, we question the need to have such
memory demanding networks for the specific task of salient object segmentation.
To this end, we propose a way to learn a memory-efficient network from scratch
by training it only on salient object detection datasets. Our method encodes
images to gridized superpixels that preserve both the object boundaries and the
connectivity rules of regular pixels. This representation allows us to use
convolutional neural networks that operate on regular grids. By using these
encoded images, we train a memory-efficient network using only 0.048\% of the
number of parameters that other deep salient object detection networks have.
Our method shows comparable accuracy with the state-of-the-art deep salient
object detection methods and provides a faster and a much more memory-efficient
alternative to them. Due to its easy deployment, such a network is preferable
for applications in memory limited devices such as mobile phones and IoT
devices.Comment: 6 pages, submitted to MMSP 201
Towards Better Image Embeddings Using Neural Networks
The primary focus of this dissertation is to study image embeddings extracted by neural networks. Deep Learning (DL) is preferred over traditional Machine Learning (ML) for the reason that feature representations can be automatically constructed from data without human involvement. On account of the effectiveness of deep features, the last decade has witnessed unprecedented advances in Computer Vision (CV), and more real-world applications are expected to be introduced in the coming years.
A diverse collection of studies has been included, covering areas such as person re-identification, vehicle attribute recognition, neural image compression, clustering and unsupervised anomaly detection. More specifically, three aspects of feature representations have been thoroughly analyzed. Firstly, features should be distinctive, i.e., features of samples from distinct categories ought to differ significantly. Extracting distinctive features is essential for image retrieval systems, in which an algorithm finds the gallery sample that is closest to a query sample. Secondly, features should be privacy-preserving, i.e., inferring sensitive information from features must be infeasible. With the widespread adoption of Machine Learning as a Service (MLaaS), utilizing privacy-preserving features prevents privacy violations even if the server has been compromised. Thirdly, features should be compressible, i.e., compact features are preferable as they require less storage space. Obtaining compressible features plays a vital role in data compression.
Towards the goal of deriving distinctive, privacy-preserving and compressible feature representations, research articles included in this dissertation reveal different approaches to improving image embeddings learned by neural networks. This topic remains a fundamental challenge in Machine Learning, and further research is needed to gain a deeper understanding
Competitions in Education: Case Study on Face Verification
All genuine knowledge originates in direct experience, especially for engineering courses. To help the students grasp hands-on experience of solving practical problems, a Machine Learning competition named TUGraz-TUT Face Verification Challenge was jointly organized by Graz University of Technology and Tampere University of Technology. The objective of the competition was to identify whether two facial images represent the same person. During the two-month period, the competition received 137 entries submitted by 28 players in 20 teams. This thesis summarizes the outcome of the competition. To scrutinize the face verification system systematically, the processing workflow was divided into several parts. In the procedure of face alignment, Unsupervised Joint Alignment and Ensemble of Regression Trees were compared. Subsequently, the OpenFace and VGG Face features were retrieved from the aligned images. In the classification system, the performance of neural network and support vector classification were evaluated. Moreover, the influence of the ensemble strategies and the result of different error metrics were investigated. Based on the cutting-edge deep neural networks proposed by the research community, the winning solutions attained excellent results as the Weighted AUC scores exceeded 0.9990. In addition to the preceding accomplishments, the findings suggested that there were still opportunities for further enhancements of the face verification systems. The limitations of current work and a handful of conceivable directions for future research had been deduced
FlipReID : Closing the Gap between Training and Inference in Person Re-Identification
Since neural networks are data-hungry, incorporating data augmentation in training is a widely adopted technique that enlarges datasets and improves generalization. On the other hand, aggregating predictions of multiple augmented samples (i.e., test-Time augmentation) could boost performance even further. In the context of person re-identification models, it is common practice to extract embeddings for both the original images and their horizontally flipped variants. The final representation is the mean of the aforementioned feature vectors. However, such scheme results in a gap between training and inference, i.e., the mean feature vectors calculated in inference are not part of the training pipeline. In this study, we devise the FlipReID structure with the flipping loss to address this issue. More specifically, models using the FlipReID structure are trained on the original images and the flipped images simultaneously, and incorporating the flipping loss minimizes the mean squared error between feature vectors of corresponding image pairs. Extensive experiments show that our method brings consistent improvements. In particular, we set a new record for MSMT17 which is the largest person re-identification dataset. The source code is available at https://github.com/nixingyang/FlipReID.acceptedVersionPeer reviewe
On the Importance of Encrypting Deep Features
In this study, we analyze model inversion attacks with only two assumptions: feature vectors of user data are known, and a black-box API for inference is provided. On the one hand, limitations of existing studies are addressed by opting for a more practical setting. Experiments have been conducted on state-of-the-art models in person re-identification, and two attack scenarios (i.e., recognizing auxiliary attributes and reconstructing user data) are investigated. Results show that an adversary could successfully infer sensitive information even under severe constraints. On the other hand, it is advisable to encrypt feature vectors, especially for a machine learning model in production. As an alternative to traditional encryption methods such as AES, a simple yet effective method termed ShuffleBits is presented. More specifically, the binary sequence of each floating-point number gets shuffled. Deployed using the one-time pad scheme, it serves as a plug-and-play module that is applicable to any neural network, and the resulting model directly outputs deep features in encrypted form. Source code is publicly available at https://github.com/nixingyang/ShuffleBits.acceptedVersionPeer reviewe
Towards a Real-Time Facial Analysis System
Facial analysis is an active research area in computer vision, with many practical applications. Most of the existing studies focus on addressing one specific task and maximizing its performance. For a complete facial analysis system, one needs to solve these tasks efficiently to ensure a smooth experience. In this work, we present a system-level design of a real-time facial analysis system. With a collection of deep neural networks for object detection, classification, and regression, the system recognizes age, gender, facial expression, and facial similarity for each person that appears in the camera view. We investigate the parallelization and interplay of individual tasks. Results on common off-the-shelf architecture show that the system's accuracy is comparable to the state-of-the-art methods, and the recognition speed satisfies real-time requirements. Moreover, we propose a multitask network for jointly predicting the first three attributes, i.e., age, gender, and facial expression. Source code and trained models are available at https://github.com/mahehu/TUT-live-age-estimator.acceptedVersionPeer reviewe
Loop-closure detection by LiDAR scan re-identification
In this work, loop-closure detection from LiDAR scans is defined as an image re-identification problem. Re-identification is performed by computing Euclidean distances of a query scan to a gallery set of previous scans. The distances are computed in a feature embedding space where the scans are mapped by a convolutional neural network (CNN). The network is trained using the triplet loss training strategy. In our experiments we compare different backbone networks, variants of the triplet loss and generic and LiDAR specific data augmentation techniques. With a realistic indoor dataset the best architecture obtains the mean average precision (mAP) above 0.94.acceptedVersionPeer reviewe
Vehicle Attribute Recognition by Appearance : Computer Vision Methods for Vehicle Type, Make and Model Classification
This paper studies vehicle attribute recognition by appearance. In the literature, image-based target recognition has been extensively investigated in many use cases, such as facial recognition, but less so in the field of vehicle attribute recognition. We survey a number of algorithms that identify vehicle properties ranging from coarse-grained level (vehicle type) to fine-grained level (vehicle make and model). Moreover, we discuss two alternative approaches for these tasks, including straightforward classification and a more flexible metric learning method. Furthermore, we design a simulated real-world scenario for vehicle attribute recognition and present an experimental comparison of the two approaches.publishedVersionPeer reviewe