84 research outputs found

    Research on Shear Lag Effect of T-shaped Short-leg Shear Wall

    Get PDF
    Longitudinal displacement of cross section of T-shaped shortlegshear wall was simplified to three parts: shear lag warpingdisplacement, plane section bending displacement and axialdisplacement. Shear lag warping deformation was assumed ascubic parabola distribution along flange, and based on minimumpotential energy principle, differential equations were deduced;with boundary conditions, a calculation theory for shear lageffect was established. With two T-shaped short-leg shear wallmodels, vertical stresses of flanges were obtained by calculationtheory and finite element calculation respectively, and comparisonbetween theoretical analysis results and numerical calculationresults was made. At last, parameter analysis was carriedout, and the influence of shear force, shear span ratio andheight-thickness ratio on shear lag coefficient was obtained.Research shows that numerical calculation results are in goodagreement with theoretical analysis results, and each parameterhas different influence on shear lag coefficient

    BBF RFC 101: Logic Gene Module Standard

    Get PDF
    This Request for Comments (RFC) describes a new framework for standardize logic gene relations among gene circuits. Each type of logic module in gene circuit can be summarized in a standard device in electronics. In this paper, we collect several frequently-used logic modules and the corresponding classic gene structure

    BBF RFC97: Genetic Circuit Standard 1.0

    Get PDF
    Current, there is well adopted documentation of biobricks. The Registry of Standard Biology Part set the standard documentation for biobrick. However, there is no standard way to document a genetic circuit, what information should be included in a description of a genetic circuit. We have therefore develop the technique standard for recording a genetic circuits. This standard will help the sharing of genetic circuitsā€™ information among synthetic biology community

    Recombination analysis based on the complete genome of bocavirus

    Get PDF
    Bocavirus include bovine parvovirus, minute virus of canine, porcine bocavirus, gorilla bocavirus, and Human bocaviruses 1-4 (HBoVs). Although recent reports showed that recombination happened in bocavirus, no systematical study investigated the recombination of bocavirus. The present study performed the phylogenetic and recombination analysis of bocavirus over the complete genomes available in GenBank. Results confirmed that recombination existed among bocavirus, including the likely inter-genotype recombination between HBoV1 and HBoV4, and intra-genotype recombination among HBoV2 variants. Moreover, it is the first report revealing the recombination that occurred between minute viruses of canine

    Structural insight into mitochondrial Ī²-barrel outer membrane protein biogenesis

    Get PDF
    Abstract: In mitochondria, Ī²-barrel outer membrane proteins mediate protein import, metabolite transport, lipid transport, and biogenesis. The Sorting and Assembly Machinery (SAM) complex consists of three proteins that assemble as a 1:1:1 complex to fold Ī²-barrel proteins and insert them into the mitochondrial outer membrane. We report cryoEM structures of the SAM complex from Myceliophthora thermophila, which show that Sam50 forms a 16-stranded transmembrane Ī²-barrel with a single polypeptide-transport-associated (POTRA) domain extending into the intermembrane space. Sam35 and Sam37 are located on the cytosolic side of the outer membrane, with Sam35 capping Sam50, and Sam37 interacting extensively with Sam35. Sam35 and Sam37 each adopt a GST-like fold, with no functional, structural, or sequence similarity to their bacterial counterparts. Structural analysis shows how the Sam50 Ī²-barrel opens a lateral gate to accommodate its substrates

    Pediatric obstructive sleep apnea diagnosis: leveraging machine learning with linear discriminant analysis

    Get PDF
    ObjectiveThe objective of this study was to investigate the effectiveness of a machine learning algorithm in diagnosing OSA in children based on clinical features that can be obtained in nonnocturnal and nonmedical environments.Patients and methodsThis study was conducted at Beijing Children's Hospital from April 2018 to October 2019. The participants in this study were 2464 children aged 3ā€“18 suspected of having OSA who underwent clinical data collection and polysomnography(PSG). Participantsā€™ data were randomly divided into a training set and a testing set at a ratio of 8:2. The elastic net algorithm was used for feature selection to simplify the model. Stratified 10-fold cross-validation was repeated five times to ensure the robustness of the results.ResultsFeature selection using Elastic Net resulted in 47 features for AHI ā‰„5 and 31 features for AHI ā‰„10 being retained. The machine learning model using these selected features achieved an average AUC of 0.73 for AHI ā‰„5 and 0.78 for AHI ā‰„10 when tested externally, outperforming models based on PSG questionnaire features. Linear Discriminant Analysis using the selected features identified OSA with a sensitivity of 44% and specificity of 90%, providing a feasible clinical alternative to PSG for stratifying OSA severity.ConclusionsThis study shows that a machine learning model based on children's clinical features effectively identifies OSA in children. Establishing a machine learning screening model based on the clinical features of the target population may be a feasible clinical alternative to nocturnal OSA sleep diagnosis

    Bipartite binding and partial inhibition links DEPTOR and mTOR in a mutually antagonistic embrace.

    Get PDF
    The mTORC1 kinase complex regulates cell growth, proliferation, and survival. Because mis-regulation of DEPTOR, an endogenous mTORC1 inhibitor, is associated with some cancers, we reconstituted mTORC1 with DEPTOR to understand its function. We find that DEPTOR is a unique partial mTORC1 inhibitor that may have evolved to preserve feedback inhibition of PI3K. Counterintuitively, mTORC1 activated by RHEB or oncogenic mutation is much more potently inhibited by DEPTOR. Although DEPTOR partially inhibits mTORC1, mTORC1 prevents this inhibition by phosphorylating DEPTOR, a mutual antagonism that requires no exogenous factors. Structural analyses of the mTORC1/DEPTOR complex showed DEPTOR's PDZ domain interacting with the mTOR FAT region, and the unstructured linker preceding the PDZ binding to the mTOR FRB domain. The linker and PDZ form the minimal inhibitory unit, but the N-terminal tandem DEP domains also significantly contribute to inhibition
    • ā€¦
    corecore