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Objective: The objective of this study was to investigate the effectiveness of a
machine learning algorithm in diagnosing OSA in children based on clinical
features that can be obtained in nonnocturnal and nonmedical environments.
Patients and methods: This study was conducted at Beijing Children’s Hospital
from April 2018 to October 2019. The participants in this study were 2464
children aged 3–18 suspected of having OSA who underwent clinical data
collection and polysomnography(PSG). Participants’ data were randomly
divided into a training set and a testing set at a ratio of 8:2. The elastic
net algorithm was used for feature selection to simplify the model. Stratified
10-fold cross-validation was repeated five times to ensure the robustness of
the results.
Results: Feature selection using Elastic Net resulted in 47 features for AHI ≥5 and
31 features for AHI ≥10 being retained. The machine learning model using these
selected features achieved an average AUC of 0.73 for AHI ≥5 and 0.78 for AHI
≥10 when tested externally, outperforming models based on PSG questionnaire
features. Linear Discriminant Analysis using the selected features identified OSA
with a sensitivity of 44% and specificity of 90%, providing a feasible clinical
alternative to PSG for stratifying OSA severity.
Conclusions: This study shows that a machine learning model based on
children’s clinical features effectively identifies OSA in children. Establishing a
machine learning screening model based on the clinical features of the
target population may be a feasible clinical alternative to nocturnal OSA
sleep diagnosis.
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1 Introduction

Obstructive sleep apnea (OSA) is a severe type of sleep-

disordered breathing (SDB) characterized by recurrent events,

including instances of partial or complete obstruction of the

upper airway and disruptions in normal oxygenation, ventilation,

and sleep patterns (1). In children, the estimated prevalence of

OSA is 1%–5% (2). However, it is notably higher, ranging from

33% to 61%, among youths who are diagnosed with obesity (3).

Untreated OSA has been linked to disturbances in both the

cardiovascular and metabolic systems, as well as neurocognitive

and behavioral dysfunction (4). Additionally, it is associated with

hypertension (5), diminished school performance (6), growth

failure (7), and a decline in overall quality of life (8).

Polysomnography (PSG) is the gold standard for diagnosing

and characterizing OSA (2). However, it has drawbacks, such as

being costly, time-consuming, and requiring specialized facilities

and staff. Data collection of PSG requires an overnight hospital

stay in a specially equipped sleeping suite involving more than

15 measurement channels (9). Based on these limitations,

previous research indicates that over 80% of individuals with

OSA are estimated to remain undiagnosed (10), and only 5%–

10% of children receive PSG before adenotonsillectomy, leading

to potential overuse of surgeries and postoperative risks (11).

There is a view that developing a practical and affordable OSA

diagnostic model would greatly benefit children in areas with

limited sleep laboratory facilities (12).

Machine Learning (ML) methods represent an evolving

approach capable of simultaneously and autonomously

processing substantial volumes of data, continually refining their

classification performance through previous experiences (13).

Particularly adept at discerning patterns within data featuring

numerous variables (14), ML methods harness extensive clinical

datasets to craft practical diagnostic tools. In recent years,

promising results have been reported in studies involving ML

methods that facilitate OSA diagnosis using children’s clinical

features to develop diagnostic tools (15, 16), even to classify sleep

stages in children with OSA (17). Most OSA diagnosis studies

using ML methods rely on nocturnal biological signals such as

Electrocardiogram (ECG), Electroencephalogram (EEG), Oxygen

saturation (SpO2), and airflow signals to build diagnostic models

(18). Compared with PSG, this approach dramatically reduces

the number of biomarkers collected but still requires specialized

electronic equipment for data collection.

Using clinical features and questionnaires is a cost-effective

approach for identifying children with OSA, circumventing the

need for specialized laboratory and sleep monitoring equipment

(19–23). Notably, a study has enhanced the efficacy of OSA

screening by using Selected Features and optimizing existing ones,

demonstrating improved performance after eliminating

redundancy features (24). However, these studies do not use

cross-validation or test sets to verify classification performance.

Given these considerations, our hypothesis posits that a machine

learning approach, integrating multiple clinical variables, can more

effectively identify pediatric OSA than standalone questionnaires.

Consequently, this study pursues dual objectives: (1) Construction
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of a machine learning model solely relying on non-invasive

clinical features for pediatric OSA diagnosis, and (2) Assessment

and comparison of its performance against models derived from

established sleep questionnaires.
2 Materials and methods

2.1 Dataset and inclusion and exclusion
criteria

The study received approval from the Ethics Committee of

Beijing Children’s Hospital, Capital Medical University [(2022)-

E-111-R]. Data collection occurred between April 2018 and

October 2019 and involved children aged 3–18 years suspected of

having OSA. Written informed consent was obtained from the

parent or guardian of each participating child. A specialized

physician measured the children’s height, weight, neck, waist,

and hip circumference before PSG. Additionally, the parents or

guardians filled out an information collection form to provide

the necessary features for the study.

Exclusion criteria included missing demographic information,

presence of other disease-causing disordered breathing (e.g.,

neuromuscular diseases, craniofacial dysplasia, Down syndrome),

chronic lung diseases, previous adenoidectomy and/or

tonsillectomy, respiratory infection within the last three weeks,

total sleep time less than 5 h, and non-completion of the

questionnaire. The study adhered to the reporting guidelines of

the Transparent Reporting of a multivariable prediction model

for Individual Prognosis or Diagnosis (TRIPOD) statement (25).
2.2 Clinical feature data collection

The features used in this study were collected from no wearable

devices or other overnight biomarker recordings. (1) Demographic

and anthropometric data, including age, sex, neck circumference,

abdominal circumference, hip circumference, and Body mass

index (BMI), were collected. Overweight status was assessed

according to the BMI standard for children aged 2–18 in China

(26). The ratios of neck circumference to height, waist

circumference to height, hip circumference to height, and waist to

hip ratio were also calculated. (2) Children’s symptoms and living

habits were determined based on existing questionnaires such as

the Pediatric Sleep Questionnaire (PSQ) (27), the Obstructive

Sleep Apnea-18 (OSA-18) (28), and the Hong Kong Children’s

Sleep Questionnaire (HK-CSQ) (29). Some questions were refined

to provide more information. In addition, we also collected

information about family members, including the prevalence of

snoring, OSA, and smoking, as well as the educational level of the

parents. A total of 102 features have been collected, and a list of

these features is shown in Supplementary Material 1.

Specialized doctors collected the above data using a questionnaire.

The questionnaire was designed to gather clinical features, not as a

screening test, and was formulated in simple language consistent with

the local culture. Any confusing questions were clarified by a doctor.
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FIGURE 1

The block diagram of raw dataset preprocessing.
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2.3 Polysomnography

All patients underwent standard nocturnal PSG at Beijing

Children’s Hospital of Capital Medical University. The Alice 5

PSG device (Philips, Amsterdam, The Netherlands) was used for

data collection. The data were manually scored according to the

American Academy of Sleep Medicine (AASM) 2012 scoring

criteria (30). Obstructive apnea was defined as a greater than

90% reduction in oronasal flow for at least two respiratory cycles,

accompanied by respiratory efforts throughout the event.

Hypopnea is defined as a reduction in airflow of at least ≥30%,
accompanied by event-related arousal or oxygen desaturations of

>3%, which persists for a minimum of two respiratory cycles.

The apnea hypopnea index (AHI) was defined as the mean

number of obstructive apnea and hypopnea events per hour

during sleep. In this study, AHI ≥5 and AHI ≥10 were used as

grouping criteria. The statistical differences between these groups

are shown in Supplementary Material 1.
2.4 Data preprocessing

2.4.1 Raw datasets
The study included 2,464 patients (1,665 boys, 799 girls). Each

participant in the raw dataset had 102 features and one label

column. The label values were encoded as 1 for the positive class

and 0 for the negative class. Python 3.6 and the open-source

Python automated machine learning library, PyCaret 2.3.10, were

used for data preprocessing, modeling, evaluation, statistical

analysis, and feature analysis33 (31).
2.4.2 Raw data preprocessing
In this paper, the process of preprocessing the raw dataset

is shown in Figure 1. Initially, missing values in categorical

features were imputed with “NaN”. The dataset was then

randomly split into a training set (1,971 samples) and a
Frontiers in Pediatrics 03
testing set (493 samples) with an 8:2 ratio. Afterward, one-

hot encoding was applied to categorical features.

Subsequently, we used the “z-score” normalization methods to

perform data normalization and employed the “Yeo-Johnson”

transformation methods to perform data transformation on

continuous features (32). The “z-score” normalization method

is used to find out the mean and standard deviation of the

sample feature “x” and then use “(x-mean)/std” to replace

the original feature value. The mean of each feature after

“z-score” standardization is 0, and the standard deviation is

1. The “Yeo-Johnson” transformation methods bring the

shape of the probability density function of the features

closer to a normal distribution.
2.5 Machine learning methods

Instead of complex models with limited interpretability, six

common ML methods were used for data modeling and

evaluated for pediatric OSA binary classification performance

using actual clinical data during cross-validation (33) as reported

in previous studies (34–36). ML methods included logistic

regression (LR) (37), linear discriminant analysis (LDA) (38),

radial basis function kernel support vector machine (RBF-SVM)

(39–41), CatBoost (42), AdaBoost (43), and random forest

classifiers (RF) (44).

Several common metrics were implemented for the

performance evaluation of each ML algorithm on the training

and testing sets, including accuracy, balanced accuracy (BA), the

area under the receiver operating characteristic curve (AUC)

(45), positive predictive value (PPV), negative predictive value

(NPV), sensitivity and specificity. Accuracy refers to the

proportion of correctly identified samples in all samples.

Balanced accuracy is a corrected measure of accuracy used for

comparing datasets with imbalances in sample size. Higher AUC

values indicate better classification performance of the model.

The probability threshold was set to 0.5.
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2.6 The procedure of data modeling

The data modeling procedure, as shown in Figure 2, was

divided into three stages: model training, hyperparameter tuning

of the selected model, and model evaluation. Hyperparameter

tuning was performed using a random grid search, and the

highest AUC value was used as the target. Five random seed

values were utilized for data splitting during preprocessing to

reduce bias (46). Six metrics were obtained from each

hyperparameter-tuned ML model on the testing datasets. The

average AUC value was calculated from five repetitions of the

data modeling process, and other evaluation metrics were

obtained similarly.

The preprocessed training datasets underwent model

training and optimization using 10-stratified k-fold cross-

validation. Overfitting was assessed by comparing results between

training and testing datasets, and the selected hyperparameters

were evaluated by comparing the trained model with the

hyperparameter-tuned model. More reliable estimates of model

performance were obtained through 10-stratified k-fold cross-

validation in each repetition, ensuring consistent class

distribution in each fold. The hyperparameters tuned through

cross-validation of each machine learning algorithm is shown in

Supplementary Material 5.

In addition, the best model was then trained and tested on

preprocessed datasets that included 22 features of the PSQ

questionnaire to predict the severity of OSA.
FIGURE 2

The block diagram of the process of data modeling (A) without feature sele
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2.7 The procedure of feature selection

To select predictive features for OSA samples and create a

concise model, we employed the Elastic net method as the feature

selection algorithm (47). This method applies L1 and L2 penalties

during training to shrink coefficients of unimportant features to

zero. The Elastic net was implemented on all preprocessed

datasets with two optimal parameters (alpha and L1_ratio) using

the ElasticNet and ElasticNetCV functions (48). Features with

coefficients having an absolute value greater than zero were

retained, while those with a coefficient of zero were eliminated.

The feature selection procedure and optimal alpha and

L1_ratio values are demonstrated in Supplementary Material 2.

Finally, we performed a paired t test to compare the predictive

performance of the best model based on PSQ and our selected

feature set when an AHI greater than 5 and 10 events/h were the

classification criteria. P < 0.05 was considered significant.
3 Results

After feature selection, 31 features were retained for a binary

classification threshold of AHI ≥10 events/h and 47 features for

AHI ≥5 events/h. The selected features are listed in

Supplementary Material 3, and the details of the feature

coefficients’ absolute values are reported in Supplementary

Material 4. Twenty-seven features are simultaneously selected by
ction and (B) with feature selection.
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TABLE 1 Performance of each machine learning model using all features on test dataset (mean ± SD).

Catboost Adaboost LDA RF RBF-SVM LR
The machine learning models
performance of AHI ≥5

Accuracy 0.68 ± 0.02 0.68 ± 0.02 0.68 ± 0.02 0.66 ± 0.03 0.66 ± 0.03 0.65 ± 0.02

AUC 0.72 ± 0.01 0.72 ± 0.01 0.73 ± 0.01 0.72 ± 0.02 0.72 ± 0.02 0.71 ± 0.02

Sensitivity 0.45 ± 0.05 0.46 ± 0.06 0.55 ± 0.05 0.51 ± 0.20 0.62 ± 0.05 0.58 ± 0.07

Specificity 0.83 ± 0.03 0.83 ± 0.04 0.76 ± 0.02 0.77 ± 0.13 0.70 ± 0.04 0.70 ± 0.08

PPV 0.65 ± 0.04 0.65 ± 0.04 0.62 ± 0.04 0.64 ± 0.11 0.58 ± 0.03 0.57 ± 0.05

NPV 0.69 ± 0.03 0.69 ± 0.04 0.71 ± 0.03 0.70 ± 0.05 0.73 ± 0.03 0.71 ± 0.04

The machine learning models
performance of AHI ≥10

Balanced Accuracy 0.59 ± 0.03 0.59 ± 0.02 0.66 ± 0.03 0.67 ± 0.04 0.66 ± 0.03 0.63 ± 0.02

AUC 0.76 ± 0.02 0.75 ± 0.02 0.77 ± 0.03 0.75 ± 0.03 0.75 ± 0.03 0.74 ± 0.03

Sensitivity 0.21 ± 0.06 0.21 ± 0.06 0.44 ± 0.06 0.53 ± 0.15 0.53 ± 0.14 0.37 ± 0.12

Specificity 0.97 ± 0.01 0.97 ± 0.01 0.88 ± 0.01 0.80 ± 0.10 0.79 ± 0.09 0.89 ± 0.09

PPV 0.69 ± 0.07 0.64 ± 0.05 0.52 ± 0.05 0.46 ± 0.10 0.45 ± 0.10 0.53 ± 0.10

NPV 0.81 ± 0.02 0.81 ± 0.02 0.84 ± 0.02 0.86 ± 0.03 0.86 ± 0.01 0.83 ± 0.02

AHI, apnea hypopnea index; AUC, area under the receiver operating characteristic curve; PPV, positive predictive value; NPV, negative predictive value.

The AUC values with the best performance are provided in bold.
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machine learning algorithms for diagnostic tasks with AHI

thresholds of 5 and 10. Among them, Sex has been proven to be

a risk factor for OSA in children (49). Five features associated

with Children’s performance during bedtime had the highest

feature importance values, indicating that these five features

best-discriminated patients with vs. without moderate to severe

pediatric OSA. The five features are A2. Snore more than half

the time; A3. Always snore; A4. Snore loudly; A6. Have trouble

breathing or struggle to breathe; A7. Stop breathing during

the night; Q4. Mouth breathing during sleep. Based on the result

of the feature coefficients’ absolute values, four features

associated with Children’s body measurement data and one

feature associated with characteristics of family members

were also used in the final model, e.g., Neck circumference,

Hip circumference, Neck/height_ratio, Waist/hip_ratio, the

educational level of the mother.

We compared the performance of sixmachine learningmodels for

predicting OSA. Table 1 summarizes their average performance,

obtained by repeating the data modeling process five times on the

test datasets with all features. The performance was evaluated using

six metrics, expressed as mean ± standard deviation. The results

showed that the LDA classifier outperformed other models with the
TABLE 2 Performance of each machine learning model using selected featur

Catboost Adaboo
The machine learning models
performance of AHI ≥5

Accuracy 0.68 ± 0.02 0.68 ± 0.0

AUC 0.72 ± 0.01 0.71 ± 0.0

Sensitivity 0.46 ± 0.04 0.47 ± 0.0

Specificity 0.83 ± 0.04 0.82 ± 0.0

PPV 0.65 ± 0.04 0.65 ± 0.0

NPV 0.69 ± 0.03 0.69 ± 0.0

The machine learning models
performance of AHI ≥10

Balanced Accuracy 0.59 ± 0.02 0.59 ± 0.0

AUC 0.77 ± 0.01 0.76 ± 0.0

Sensitivity 0.21 ± 0.05 0.23 ± 0.0

Specificity 0.97 ± 0.01 0.96 ± 0.0

PPV 0.66 ± 0.05 0.61 ± 0.0

NPV 0.81 ± 0.02 0.81 ± 0.0

AHI, apnea hypopnea index; AUC, area under the receiver operating characteristic cur

The AUC values with the best performance are provided in bold.
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highest average AUC value of 0.73 and a mean accuracy rate of 68%

when using an AHI of 5 events/h as the binary classification

threshold. For the AHI of 10 events/h threshold, the LDA classifier

remained the best model with the highest average AUC value of 0.77

and a mean balanced accuracy rate of 66%.

The performance of the selected features obtained by repeating

the data modeling process five times on the test datasets is shown

in Table 2. The LDA classifier achieved the highest average AUC

value of 0.73 and a mean accuracy rate of 68% for the AHI ≥5
group. Additionally, it had the highest average AUC value of 0.78

and a mean balanced accuracy rate of 67% for the AHI ≥10 group.

Furthermore, we compared the diagnostic ability of feature

selection with the PSQ questionnaire using the LDA algorithm.

The results, presented in Table 3, demonstrate that the LDA

model of feature selection had a higher AUC value, sensitivity,

and NPV than PSQ for classifying both the AHI ≥5 and AHI

≥10 groups (P < 0.05). These findings demonstrate that our

selected features, when analyzed using the LDA algorithm, offer

superior diagnostic accuracy and classification ability compared

to the traditional PSQ features, particularly in distinguishing

between different severity levels of pediatric OSA. The

improvements in AUC, sensitivity, and specificity underscore the
es on test dataset (mean ± SD).

st LDA RF RBF-SVM LR
3 0.68 ± 0.01 0.67 ± 0.02 0.67 ± 0.02 0.68 ± 0.02

2 0.73 ± 0.02 0.73 ± 0.01 0.72 ± 0.03 0.72 ± 0.02

5 0.58 ± 0.03 0.56 ± 0.11 0.63 ± 0.04 0.60 ± 0.10

4 0.76 ± 0.02 0.74 ± 0.10 0.69 ± 0.04 0.73 ± 0.08

4 0.62 ± 0.03 0.61 ± 0.07 0.58 ± 0.02 0.61 ± 0.05

4 0.72 ± 0.03 0.72 ± 0.04 0.73 ± 0.03 0.73 ± 0.04

2 0.67 ± 0.01 0.66 ± 0.05 0.70 ± 0.02 0.62 ± 0.01

2 0.78 ± 0.02 0.78 ± 0.02 0.77 ± 0.02 0.77 ± 0.03

4 0.44 ± 0.03 0.44 ± 0.17 0.66 ± 0.02 0.31 ± 0.03

1 0.90 ± 0.02 0.87 ± 0.07 0.74 ± 0.02 0.94 ± 0.01

5 0.57 ± 0.06 0.54 ± 0.12 0.42 ± 0.04 0.61 ± 0.06

2 0.85 ± 0.01 0.85 ± 0.03 0.88 ± 0.01 0.82 ± 0.02

ve; PPV, positive predictive value; NPV, negative predictive value.
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TABLE 3 Comparison of LDA model performance: PSQ vs. Selected
Features (Mean ± SD).

PSQ
features

Our selected
features

P
value

AHI ≥5 Accuracy 0.67 ± 0.02 0.68 ± 0.01 0.0763

AUC 0.70 ± 0.02 0.73 ± 0.02 0.0139

Sensitivity 0.48 ± 0.03 0.58 ± 0.03 0.0000

Specificity 0.80 ± 0.02 0.76 ± 0.02 0.0246

PPV 0.62 ± 0.02 0.62 ± 0.03 0.5982

NPV 0.69 ± 0.03 0.72 ± 0.03 0.0007

AHI ≥10 Balanced
Accuracy

0.57 ± 0.01 0.67 ± 0.01 0.0000

AUC 0.75 ± 0.03 0.78 ± 0.02 0.0238

Sensitivity 0.20 ± 0.04 0.44 ± 0.03 0.0000

Specificity 0.95 ± 0.02 0.90 ± 0.02 0.0008

PPV 0.56 ± 0.12 0.57 ± 0.06 0.6704

NPV 0.80 ± 0.02 0.85 ± 0.01 0.0001

PSQ, Pediatric Sleep Questionnaire; AHI, apnea hypopnea index; AUC, area under

the receiver operating characteristic curve; PPV, positive predictive value; NPV,

negative predictive value.

The AUC values with the best performance are provided in bold.
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potential clinical utility of the feature selection approach in

enhancing the accuracy of OSA diagnosis.
4 Discussion

The diagnostic ability of six ML methods based on clinical

features in children with OSA was assessed in our study. The

feature data used in this study can be collected during the day to

avoid the burden of physiological signal collection throughout the

night on children. The performance of each model was evaluated

by the average accuracy rate and AUC value, which were obtained

after five repetitions of the data modeling process. The ML models

using the dataset with selected features showed slightly better

performance compared to those using the dataset with all features.

Among the ML models using the selected feature dataset, LDA

obtained the best performance with an AUC value of 0.73 and an

accuracy rate of 68% for the AHI ≥5 group and an AUC value of

0.78 and an accuracy rate of 67% for the AHI ≥10 group.

Classical LDA projects the data onto a lower-dimensional vector

space by the projection hyperplane that minimizes the interclass
TABLE 4 Comparing machine learning methods to predict OSA in children b

Author Dataset Age Features
collected

Methodol

Ahmed et al.
(53)

464 Children with
OSA from
the CHAT

5-10 96 Logistic regression

Catherine
et al. (24)

124 Children with
OSA from the
CHAT

3-18 22 Linear and logistic regressio

Our study 2,464 Children
with suspected
OSA

3-14 102 Logistic regression, Linear d
basis function kernel suppo
CatBoost, AdaBoost, Rando

CHAT, childhood adenotonsillectomy trial; AHI, apnea hypopnea index; AUC, area und

negative predictive value; PSQ-SRBD: pediatric sleep questionnaire-sleep related brea
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variance and maximizes the distance between the projected means

of the classes (38). One possible explanation is the low feature

dimension in our study, which gives the LDA model advantages

in classification tasks. After feature selection further reduces the

number of features, the performance of LDA is further improved.

Sleep questionnaires are the primary method for the daytime

diagnosis of OSA in children. Improving its diagnostic

performance is a concern of researchers. A recent meta-analysis

reported the performance of the PSQ in predicting OSA in

children and showed that the accuracy of predicting children

with moderate OSA was 62.45%, the sensitivity was 0.79 [95% CI

0.69, 0.86], and the specificity was 0.47 [95% CI 0.28, 0.67].

Therefore, the reliability of the PSQ in real-world clinical

populations is still uncertain (50). A recent study used clinical

features to identify adult OSA and obtained an AUC value of

0.92, which has an advantage over our predictive model. One

possible reason is that part of the predictive characteristics of

children come from parents’ description of their children’s sleep,

which may reduce the reliability of the features (51).

In this study, we observed that specific questions in the original

questionnaire were prone to ambiguity, potentially leading to less

specific responses from parents. For example, question A3 from

the Pediatric Sleep Questionnaire (PSQ), which asks about the

frequency of snoring with the descriptor “Always,” might be

challenging for parents to interpret accurately. The term

“Always” is inherently vague, and parental subjective

interpretations may vary, introducing potential inaccuracies in

the data. We refined the answers to such questions to address

this issue and enhance the precision of responses. Specifically, we

focused on the A3 question regarding “Always snore” and

introduced a new labeling scheme: Label “0” signifies a negative

response, Label “1” corresponds to less than one time per month,

Label “2” represents 1–2 times per month, Label “3” indicates 1

to 3 times per week, Label “4” denotes more than three times per

week, and Label “5” designates an unclear response. Our research

team conducted This refinement process internally, and no direct

communication with the questionnaire developers was pursued.

While we acknowledge that the original questionnaire designers

may have had specific considerations, these adjustments were

made within our research team to align with the goals of our

study. Through these refinements, we aim to improve the quality
ased on clinical features.

ogy Diagnostic
cutoff

Accuracy AUC Verification

AHI ≥5 events/h 0.6512 0.6861 Test set

AHI ≥10 events/h 0.814 0.8721

n models AHI ≥10 events/h
(Selected Features)

0.73 - None

AHI ≥10 events/h
(PSQ-SRDB)

0.65 -

iscriminant, Radial
rt vector machine,
m forest

AHI ≥5 events/h 0.68 0.73 Random test set
5 timesAHI ≥10 events/h 0.67 0.78

er the receiver operating characteristic curve; PPV, positive predictive value; NPV,

thing disorder.
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and accuracy of the data, ensuring that machine learning

algorithms can better comprehend and leverage this information

for a more effective classification of pediatric OSA.

Table 4 compares previous studies using machine learning

methods to predict OSA in children based on clinical features.

Some of these studies have demonstrated that diagnostic models

based on machine learning methods and self-built features can

offer superior diagnostic accuracy compared to OSA screening

questionnaires. For example, Catherine et al. compared the use of

self-built features with the PSQ questionnaire in their study and

reported the performance of both methods in children with

severe OSA. The prediction accuracy of the self-built features was

0.73 (0.64–0.80) compared to that PSQ questionnaire, 0.63 (0.54–

0.72) (24). Similarly, Ahmed et al. also used and compared self-

built features with five different screening questionnaires, with

the self-built model achieving better performance in children

with severe OSA (23). The above studies all used data from the

Childhood Adenotonsillectomy Trial (CHAT), a randomized

controlled trial that compared early outcomes of T&A (52). Our

study found similar findings in children with a suspected

diagnosis of OSA who went to the outpatient clinic, using an ML

algorithm based on 22 features of the PSQ to predict children’s

level of OSA, and its diagnostic performance was weaker than

that of the diagnostic model after feature selection. One possible

reason is that the features in the OSA screening questionnaire do

not provide enough valid diagnostic information.

In our study, as shown in Supplementary Material 1, when an

AHI of 5 events/h was used as the cutoff value, only 11 of the 22

features of the PSQ questionnaire showed significant differences

between individuals with AHI greater than or less than 5 events/

h (P < 0.05), which meant that half of the features could not

benefit diagnosis. In addition, 29 and 34 clinical features from

our questionnaire showed significant differences between groups

when the AHI cutoff values were 5 and 10 events/h, respectively.

Our feature list greatly increased the number of potentially

effective features compared with the PSQ questionnaire. We

believe it is important to consider the features’ effectiveness

when establishing a simple diagnostic tool for OSA based on

artificial intelligence. Additionally, due to differences in language

and culture, finding effective feature combinations specific to the

target population and establishing a diagnostic model may be

more suitable than directly using the existing OSA diagnostic

questionnaire. Our study is based on non-invasive clinical

features. It has a significant cost advantage over traditional sleep

monitoring (PSG), which creates the possibility of providing

efficient OSA screening tools for children in a resource-limited

medical environment. In this context, our model may provide a

rapid and economical means for medical teams to identify

children with OSA, leading to early intervention and treatment.

However, we emphasize that more in-depth research and

verification are needed before this method is put into clinical

application, and its generalization in different populations,

cultures, and medical practices still needs further investigation.

We encourage future research teams to conduct more extensive,

multicenter research to assess this method’s applicability and

robustness more comprehensively.
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There are some limitations in this study. The AHI cut-off in

this study does not include 1 event per hour, which is usually

referred to as mild OSA. It should be noted that mild OSA

children with persistent symptoms should be recommended for

treatment. Although we collected 102 features, we believe not all

OSA-related features were collected, for example, other OSA-

related features like genetics and environment. Considering other

factors affecting OSA, such as genetics and environment, more

data types should be added in the future to increase clinical

features. In addition, single-center studies, data that may be

missing, retrospective design, the age of the participants and the

lack of universality of the country may all contribute to data

source bias. Although the sample size was larger than that of

previous studies, there is still a risk of over-fitting using the same

population data for result verification, and future external

verification queues are needed to solve this problem. In the

machine learning algorithms used in this study, LDA exhibited

better performance. One possible reason is that LDA is simple

and computationally efficient, which may make it more robust

and less prone to overfitting. Nevertheless, we recognize the need

for further research to fully elucidate the underlying reasons for

the observed performance differences among these classifiers. In

addition, more excellent machine learning models such as

Bayesian networks should be considered as one of the

classification models. In this study, we only focused on

traditional feature-based methods for disease classification

without exploring the potential of deep learning methods for

processing high-dimensional features like images and sounds.

With the advantages of deep learning in sleep research (54),

introducing deep learning methods into studying OSA disease

classification may have potential benefits. Future work can

explore deep learning models such as convolution neural

networks (CNN) to improve the modeling ability of complex

feature relationships.
5 Conclusions

In this study, we used ML algorithms to analyze the clinical

features of children with a suspected diagnosis of OSA. We found

that using ML to investigate clinical features is an effective method

to identify OSA in children, and ML models based on clinical

features had better predictive ability than ML models based on the

PSQ questionnaire. Using the features of nonnocturnal biological

signals to stratify the severity of children’s OSA is an essential

diagnostic supplement to PSG. It provides references for children

in areas where PSG is unavailable and cannot be used to

determine the severity of OSA. Future research should search for

additional practical features that can improve the prediction

performance of ML algorithms.
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