125 research outputs found

    Experimental Study of Condensation Heat Transfer of R134a on Oil-infusion Surfaces

    Get PDF
    Dropwise condensation, since first recognized in 1930, has stimulated interest because its heat transfer coefficient (HTC) is much higher than film condensation. For some applications, not only a higher heat transfer performance is desired, but also the retention of the fluids on the surface can be a big issue. For example, the refrigerant retention in some enhanced tube can block the contact of the vapor-solid interface and increase the thermal resistance; it also can increase the charge of refrigerant because certain amount of refrigerant could not go through the system cycle. Many efforts were dedicated to modifying the surface and promote dropwise condensation, and most research focus on the condensation of water vapor. It is very challenging to promote dropwise condensation for working fluids with a lower surface tension than water, such as refrigerant. Research have been conducted on dropwise condensation for low surface tension fluids using oil-infusion surface, which is promoted by the contact of drop to the liquid-vapor interface instead of solid-vapor interface. However, the effectiveness and efficiency of the oil-infusion surface is still a critical challenge, and the heat transfer mechanism of dropwise condensation with such liquid-liquid interface stays unclear. In this work, condensation of R134a on oil-immerged surfaces is investigated. Heat transfer coefficient is measured, and formation of the condensate is observed using a high speed camera. Two cavity surfaces of different porous scale are examined, of which, one is nanoscale pores and another is microscale pores Mineral oil of low miscibility to R134a is soaked to be saturated in the cavity prior to the experiment. All experiments were conducted under saturated condition of ambient temperature (around 22 °C) in a pressure chamber. The subcool level of the condensation is 10 °C. Images of the local condensation formation is analyzed and heat transfer coefficient is also compared for different surfaces. The duration of the oil-infusion surface is also tested for both surfaces

    Tea intake and total body bone mineral density of all ages: a Mendelian randomization analysis

    Get PDF
    BackgroundThere is increasing evidence indicating that tea intake affects bone mineral density levels; however, the causality between tea intake and bone mineral density is inconclusive. This study aimed to assess the causal relationship between tea intake and total body bone mineral density (TB-BMD) through two-sample Mendelian randomization (MR) analysis.MethodsWe conducted a two-sample MR approach to estimate the potential causal effects of tea intake on TB-BMD at all ages in a European population. The analyses were performed using summary statistics obtained for single-nucleotide polymorphisms (SNPs), identified from a genome-wide association meta-analysis of tea intake (N = up to 447,485 individuals) and from the GEnetic Factors for OSteoporosis (GEFOS) Consortium’s genome-wide association meta-analysis (N = up to 56,284 individuals), with baseline data collected in 2018 and populations derived from the European ancestry. The association between each SNP and TB-BMD was weighted by its association with tea intake, and estimates were combined mainly using an inverse-variance weighted meta-analysis. In addition, we explored the potential causal effects between green tea intake, herbal tea intake, and TB-BMD.ResultsThe MR analysis revealed that genetically determined tea intake exerts a causal impact on TB-BMD, with an odds ratio (OR) of 1.204 (95% CI: 1.062–1.366, p = 0.004), especially in the age group of 45–60 years (OR = 1.360, 95% CI: 1.088–1.700, p = 0.007). No horizontal pleiotropy and heterogeneity were observed. However, there was no causal effect of tea intake on TB-BMD in the age groups of 0–15, 15–30, 30–45, and over 60 years. In the subgroup analysis, when green tea intake was regarded as the exposure factor, no salient associations were found between green tea consumption and TB-BMD (IVW p = 0.368). Similarly, there was also no causal association between herbal tea intake and TB-BMD (IVW p = 0.264).ConclusionThe findings of this study support the evidence that tea consumption increases bone density and reduces the risk of osteoporosis in the age group of 45–60 years within the European population

    Privacy Preservation for Federated Learning with Robust Aggregation in Edge Computing

    Get PDF
    Benefiting from the powerful data analysis and prediction capabilities of artificial intelligence (AI), the data on the edge is often transferred to the cloud center for centralized training to obtain an accurate model. To resist the risk of privacy leakage due to frequent data transmission between the edge and the cloud, federated learning (FL) is engaged in the edge paradigm, uploading the model updated on the edge server (ES) to the central server for aggregation, instead of transferring data directly. However, the adversarial ES can infer the update of other ESs from the aggregated model and the update may still expose some characteristics of data of other ESs. Besides, there is a certain probability that the entire aggregation is disrupted by the adversarial ESs through uploading a malicious update. In this paper, a privacy-preserving FL scheme with robust aggregation in edge computing is proposed, named FL-RAEC. First, the hybrid privacy-preserving mechanism is constructed to preserve the integrity and privacy of the data uploaded by the ESs. For the robust model aggregation, a phased aggregation strategy is proposed. Specifically, anomaly detection based on autoencoder is performed while some ESs are selected for anonymous trust verification at the beginning. In the next stage, via multiple rounds of random verification, the trust score of each ES is assessed to identify the malicious participants. Eventually, FL-RAEC is evaluated in detail, depicting that FL-RAEC has strong robustness and high accuracy under different attacks

    Total body bone mineral density and various spinal disorders: a Mendelian randomization study

    Get PDF
    IntroductionObservational studies have yielded inconsistent findings regarding the correlation between bone mineral density (BMD) and various spinal disorders. To explore the relationship between total-body BMD and various spinal disorders further, we conducted a Mendelian randomization analysis to assess this association.MethodsTwo-sample bidirectional Mendelian randomization (MR) analysis was employed to investigate the association between total-body BMD and various spinal disorders. The inverse-variance weighted (IVW) method was used as the primary effect estimate, and additional methods, including weighted median, MR-Egger, simple mode, and weighted mode, were used to assess the reliability of the results. To examine the robustness of the data further, we conducted a sensitivity analysis using alternative bone-density databases, validating the outcome data.ResultsMR revealed a significant positive association between total-body BMD and the prevalence of spondylosis and spinal stenosis. When total-body BMD was considered as the exposure factor, the analysis demonstrated an increased risk of spinal stenosis (IVW odds ratio [OR] 1.23; 95% confidence interval [CI], 1.14–1.32; P < 0.001) and spondylosis (IVW: OR 1.24; 95%CI, 1.16–1.33; P < 0.001). Similarly, when focusing solely on heel BMD as the exposure factor, we found a positive correlation with the development of both spinal stenosis (IVW OR 1.13, 95%CI, 1.05–1.21; P < 0.001) and spondylosis (IVW OR 1.10, 95%CI, 1.03–1.18; P = 0.0048). However, no significant associations were found between total-body BMD and other spinal disorders, including spinal instability, spondylolisthesis/spondylolysis, and scoliosis (P > 0.05).ConclusionThis study verified an association of total-body BMD with spinal stenosis and with spondylosis. Our results imply that when an increasing trend in BMD is detected during patient examinations and if the patient complains of numbness and pain, the potential occurrence of conditions such as spondylosis or spinal stenosis should be investigated and treated appropriately

    Robust cross-linked Na3V2(PO4)2F3 full sodium-ion batteries

    Get PDF
    Sodium-ion batteries (SIBs) have rapidly risen to the forefront of energy storage systems as a promising supplementary for Lithium-ion batteries (LIBs). Na3V2(PO4)2F3 (NVPF) as a common cathode of SIBs, features the merits of high operating voltage, small volume change and favorable specific energy density. However, it suffers from poor cycling stability and rate performance induced by its low intrinsic conductivity. Herein, we propose an ingenious strategy targeting superior SIBs through cross-linked NVPF with multi-dimensional nanocarbon frameworks composed of amorphous carbon and carbon nanotubes (NVPF@C@CNTs). This rational design ensures favorable particle size for shortened sodium ion transmission pathway as well as improved electronic transfer network, thus leading to enhanced charge transfer kinetics and superior cycling stability. Benefited from this unique structure, significantly improved electrochemical properties are obtained, including high specific capacity (126.9 mAh g−1 at 1 C, 1 C = 128 mA g−1) and remarkably improved long-term cycling stability with 93.9% capacity retention after 1000 cycles at 20 C. The energy density of 286.8 Wh kg−1 can be reached for full cells with hard carbon as anode (NVPF@C@CNTs//HC). Additionally, the electrochemical performance of the full cell at high temperature is also investigated (95.3 mAh g−1 after 100 cycles at 1 C at 50 oC). Such nanoscale dual-carbon networks engineering and thorough discussion of ion diffusion kinetics might make contributions to accelerating the process of phosphate cathodes in SIBs for large-scale energy storages

    Comparison of reactive magnesia, quick lime, and ordinary Portland cement for stabilization/solidification of heavy metal-contaminated soils

    No full text
    Stabilization/solidification (S/S) is commonly applied to treat heavy metal-contaminated soils through the use of lime and ordinary Portland cement (OPC). Recently, reactive magnesia (MgO) has emerged as a novel binder for S/S of heavy metal-contaminated soils; however, a comprehensive comparison between MgO, lime (CaO), and OPC for S/S application is still missing. This study compares the S/S efficiency of MgO, CaO, and OPC for soils contaminated by six individual heavy metals (Pb, Cu, Zn, Ni, Cd, and Mn) through unconfined compressive strength (UCS) test, one stage batch leaching test, and microstructural analysis. The addition of binders can transform soluble heavy metal salts to insoluble hydroxides and their complexes, and hence the leachability of heavy metals decreases. However, the level, to which the leachability can be reduced, is highly pH dependent. Contaminated soils treated with MgO have pH of 9–10.5, at which the leachability of Pb and Zn is much lower than that of OPC- or CaO-treated soils with pH of 10.5–13; for example, the leached Pb and Zn from MgO-treated soils are only 0.1%–3.3% and 0.1%–9.4% of those from OPC-treated soils, respectively. On the other hand, the leached Cd and Mn from OPC-treated soils are 0.1%–28.5% and 0.1–10.7% of those from MgO-treated soils, respectively, due to the high pH and the formation of calcium silicate hydrate (CSH) in OPC-treated soils. OPC and CaO are more effective than MgO in decreasing the Ni leachability at high original concentrations, but less effective at low original concentrations. For all soils except those contaminated by Zn, the OPC generally produces a much higher UCS, up to two orders of magnitude, than the CaO and MgO. The results of study indicate that no single binder can treat all types of heavy metal-contaminated soils perfectly, and the selection of binder is a site-specific problem.Nanyang Technological UniversityThe authors appreciate the grant (M4081914) from Nanyang Technological University, Singapore and the assistance from Shunli Shen, Jian Wei Lui, and Thiam Loong Lim

    Predicting Multi-Period Corporate Default Based on Bayesian Estimation of Forward Intensity—Evidence from China

    No full text
    We employed a forward intensity approach to predict the multi-period defaults of Chinese-listed firms during the period 2001–2019 on a monthly basis. We introduced the firm’s default heterogeneity into the model, and each firm’s actual past default situation was considered for Bayesian estimation. Maximum pseudo-likelihood estimation was conducted on 3513 firms to calculate the parameters of the Bayesian model to adjust the default intensity of all 4216 firms. Finally, we re-calculated the default probabilities and compared them with the original default probabilities of the out-of-sample 703 firms for all prediction horizons. We found that the Bayesian model, considering the firm’s default heterogeneity, improved the prediction accuracy ratio of the out-of-sample firm’s default probabilities both for short and long horizons. As compared with the original model, the prediction accuracy ratio of the out-of-sample’s default probabilities, which were computed by our model, increased by almost 15% for horizons from 1 month to 6 months. When the horizon was extended from 1 year to 3 years, the prediction accuracy ratio increased by more than 10%. We found that the Bayesian model improved the predictive performance of the forward intensity model, which is helpful to improve the credit risk measurement system of Chinese-listed firms

    A Portable Waterproof EEG Acquisition Device for Dolphins

    No full text
    The acquisition and analysis of EEG signals of dolphins, a highly intelligent creature, has always been a focus of the research of bioelectric signals. Prevailing cable-connected devices cannot be adapted to data acquisition very well when dolphins are in motion. Therefore, this study designs a novel, light-weighted, and portable EEG acquisition device aimed at relatively unrestricted EEG acquisition. An embedded main control board and an acquisition board were designed, and all modules are encapsulated in a 162 × 94 × 60 mm3 waterproof device box, which can be tied to the dolphin’s body by a silicon belt. The acquisition device uses customized suction cups with embedded electrodes and adopts a Bluetooth module for wireless communication with the ground station. The sampled signals are written to the memory card on board when the Bluetooth communication is blocked. A limited experiment was designed to verify the effectiveness of the device functionality onshore and underwater. However, more rigorous long-term tests on dolphins in various states with our device are expected in future to further prove its capability and study the movement-related artifacts

    Evaluation of Trimethoprim/Sulfamethoxazole (SXT), Minocycline, Tigecycline, Moxifloxacin, and Ceftazidime Alone and in Combinations for SXT-Susceptible and SXT-Resistant Stenotrophomonas maltophilia by In Vitro Time-Kill Experiments.

    No full text
    BackgroundThe optimal therapy for infections caused by Stenotrophomonas maltophilia (S. maltophilia) has not yet been established. The objective of our study was to evaluate the efficacy of trimethoprim/sulfamethoxazole (SXT), minocycline, tigecycline, moxifloxacin, levofloxacin, ticarcillin-clavulanate, polymyxin E, chloramphenicol, and ceftazidime against clinical isolated S. maltophilia strains by susceptibility testing and carried out time-kill experiments in potential antimicrobials.MethodsThe agar dilution method was used to test susceptibility of nine candidate antimicrobials, and time-killing experiments were carried out to evaluate the efficacy of SXT, minocycline, tigecycline, moxifloxacin, levofloxacin, and ceftazidime both alone and in combinations at clinically relevant antimicrobial concentrations.ResultsThe susceptibility to SXT, minocycline, tigecycline, moxifloxacin, levofloxacin, ticarcillin-clavulanate, chloramphenicol, polymyxin E, and ceftazidime were 93.8%, 95.0%, 83.8%, 80.0%, 76.3%, 76.3%, 37.5%, 22.5%, and 20.0% against 80 clinical consecutively isolated strains, respectively. Minocycline and tigecycline showed consistent active against 22 SXT-resistant strains. However, resistance rates were high in the remaining antimicrobial agents against SXT-resistant strains. In time-kill experiments, there were no synergisms in most drug combinations in time-kill experiments. SXT plus moxifloxacin displayed synergism when strains with low moxifloxacin MICs. Moxifloxacin plus Minocycline and moxifloxacin plus tigecycline displayed synergism in few strains. No antagonisms were found in these combinations. Overall, compared with single drug, the drug combinations demonstrated lower bacterial concentrations. Some combinations showed bactericidal activity.ConclusionsIn S. maltophilia infections, susceptibility testing suggests that minocycline and SXT may be considered first-line therapeutic choices while tigecycline, moxifloxacin, levofloxacin, and ticarcillin-clavulanate may serve as second-line choices. Ceftazidime, colistin, and chloramphenicol show poor active against S. maltophilia. However, monotherapy is inadequate in infection management, especially in case of immunocompromised patients. Combination therapy, especially SXT plus moxifloxacin, may benefit than monotherapy in inhibiting or killing S. maltophilia
    • …
    corecore