33,247 research outputs found

    Interfering directed paths and the sign phase transition

    Full text link
    We revisit the question of the "sign phase transition" for interfering directed paths with real amplitudes in a random medium. The sign of the total amplitude of the paths to a given point may be viewed as an Ising order parameter, so we suggest that a coarse-grained theory for system is a dynamic Ising model coupled to a Kardar-Parisi-Zhang (KPZ) model. It appears that when the KPZ model is in its strong-coupling ("pinned") phase, the Ising model does not have a stable ferromagnetic phase, so there is no sign phase transition. We investigate this numerically for the case of {\ss}1+1 dimensions, demonstrating the instability of the Ising ordered phase there.Comment: 4 pages, 4 figure

    Strong disorder renormalization group on fractal lattices: Heisenberg models and magnetoresistive effects in tight binding models

    Full text link
    We use a numerical implementation of the strong disorder renormalization group (RG) method to study the low-energy fixed points of random Heisenberg and tight-binding models on different types of fractal lattices. For the Heisenberg model new types of infinite disorder and strong disorder fixed points are found. For the tight-binding model we add an orbital magnetic field and use both diagonal and off-diagonal disorder. For this model besides the gap spectra we study also the fraction of frozen sites, the correlation function, the persistent current and the two-terminal current. The lattices with an even number of sites around each elementary plaquette show a dominant Ď•0=h/e\phi_0=h/e periodicity. The lattices with an odd number of sites around each elementary plaquette show a dominant Ď•0/2\phi_0/2 periodicity at vanishing diagonal disorder, with a positive weak localization-like magnetoconductance at infinite disorder fixed points. The magnetoconductance with both diagonal and off-diagonal disorder depends on the symmetry of the distribution of on-site energies.Comment: 19 pages, 20 figure

    Origin of conductivity cross over in entangled multi-walled carbon nanotube network filled by iron

    Full text link
    A realistic transport model showing the interplay of the hopping transport between the outer shells of iron filled entangled multi-walled carbon nanotubes (MWNT) and the diffusive transport through the inner part of the tubes, as a function of the filling percentage, is developed. This model is based on low-temperature electrical resistivity and magneto-resistance (MR) measurements. The conductivity at low temperatures showed a crossover from Efros-Shklovski (E-S) variable range hopping (VRH) to Mott VRH in 3 dimensions (3D) between the neighboring tubes as the iron weight percentage is increased from 11% to 19% in the MWNTs. The MR in the hopping regime is strongly dependent on temperature as well as magnetic field and shows both positive and negative signs, which are discussed in terms of wave function shrinkage and quantum interference effects, respectively. A further increase of the iron percentage from 19% to 31% gives a conductivity crossover from Mott VRH to 3D weak localization (WL). This change is ascribed to the formation of long iron nanowires at the core of the nanotubes, which yields a long dephasing length (e.g. 30 nm) at the lowest measured temperature. Although the overall transport in this network is described by a 3D WL model, the weak temperature dependence of inelastic scattering length expressed as L_phi ~T^-0.3 suggests the possibility for the presence of one-dimensional channels in the network due to the formation of long Fe nanowires inside the tubes, which might introduce an alignment in the random structure.Comment: 29 pages,10 figures, 2 tables, submitted to Phys. Rev.

    Anomalous Aharonov-Bohm conductance oscillations from topological insulator surface states

    Full text link
    We study transport properties of a topological insulator nanowire when a magnetic field is applied along its length. We predict that with strong surface disorder, a characteristic signature of the band topology is revealed in Aharonov Bohm (AB) oscillations of the conductance. These oscillations have a component with anomalous period Φ0=hc/e\Phi_0=hc/e, and with conductance maxima at odd multiples of 12Φ0\frac12\Phi_0, i.e. when the AB phase for surface electrons is π\pi. This is intimately connected to the band topology and a surface curvature induced Berry phase, special to topological insulator surfaces. We discuss similarities and differences from recent experiments on Bi2_2Se3_3 nanoribbons, and optimal conditions for observing this effect.Comment: 7 pages, 2 figure

    On Artifacts in Limited Data Spherical Radon Transform: Curved Observation Surface

    Get PDF
    In this article, we consider the limited data problem for spherical mean transform. We characterize the generation and strength of the artifacts in a reconstruction formula. In contrast to the third's author work [Ngu15b], the observation surface considered in this article is not flat. Our results are comparable to those obtained in [Ngu15b] for flat observation surface. For the two dimensional problem, we show that the artifacts are kk orders smoother than the original singularities, where kk is vanishing order of the smoothing function. Moreover, if the original singularity is conormal, then the artifacts are k+12k+\frac{1}{2} order smoother than the original singularity. We provide some numerical examples and discuss how the smoothing effects the artifacts visually. For three dimensional case, although the result is similar to that [Ngu15b], the proof is significantly different. We introduce a new idea of lifting the space

    Joint space-time trellis decoding and channel estimation in correlated fading channels

    Get PDF
    Copyright © 2004 IEEEThis letter addresses the issue of joint space-time trellis decoding and channel estimation in time-varying fading channels that are spatially and temporally correlated. A recursive space-time receiver which incorporates per-survivor processing (PSP) and Kalman filtering into the Viterbi algorithm is proposed. This approach generalizes existing work to the correlated fading channel case. The channel time-evolution is modeled by a multichannel autoregressive process, and a bank of Kalman filters is used to track the channel variations. Computer simulation results show that a performance close to the maximum likelihood receiver with perfect channel state information (CSI) can be obtained. The effects of the spatial correlation on the performance of a receiver that assumes independent fading channels are examined.Van Khanh Nguyen and Langford B. Whit

    Negative Magnetoresistance in the Nearest-neighbor Hopping Conduction

    Full text link
    We propose a size effect which leads to the negative magnetoresistance in granular metal-insulator materials in which the hopping between two nearest neighbor clusters is the main transport mechanism. We show that the hopping probability increases with magnetic field. This is originated from the level crossing in a few-electron cluster. Thus, the overlap of electronic states of two neighboring clusters increases, and the negative magnetoresistance is resulted.Comment: Latex file, no figur

    Out of equilibrium electronic transport properties of a misfit cobaltite thin film

    Full text link
    We report on transport measurements in a thin film of the 2D misfit Cobaltite Ca3Co4O9Ca_{3}Co_{4}O_{9}. Dc magnetoresistance measurements obey the modified variable range hopping law expected for a soft Coulomb gap. When the sample is cooled down, we observe large telegraphic-like fluctuations. At low temperature, these slow fluctuations have non Gaussian statistics, and are stable under a large magnetic field. These results suggest that the low temperature state is a glassy electronic state. Resistance relaxation and memory effects of pure magnetic origin are also observed, but without aging phenomena. This indicates that these magnetic effects are not glassy-like and are not directly coupled to the electronic part.Comment: accepted in Phys Rev B, Brief report
    • …
    corecore