576 research outputs found
Two-Dimensional Controlled Syntheses of Polypeptide Molecular Brushes via N-Carboxyanhydride Ring-Opening Polymerization and Ring-Opening Metathesis Polymerization.
Well-defined molecular brushes bearing polypeptides as side chains were prepared by a "grafting through" synthetic strategy with two-dimensional control over the brush molecular architectures. By integrating N-carboxyanhydride ring-opening polymerizations (NCA ROPs) and ring-opening metathesis polymerizations (ROMPs), desirable segment lengths of polypeptide side chains and polynorbornene brush backbones were independently constructed in controlled manners. The N2 flow accelerated NCA ROP was utilized to prepare polypeptide macromonomers with different lengths initiated from a norbornene-based primary amine, and those macromonomers were then polymerized via ROMP. It was found that a mixture of dichloromethane and an ionic liquid were required as the solvent system to allow for construction of molecular brush polymers having densely-grafted peptide chains emanating from a polynorbornene backbone, poly(norbornene-graft-poly(β-benzyl-l-aspartate)) (P(NB-g-PBLA)). Highly efficient postpolymerization modification was achieved by aminolysis of PBLA side chains for facile installment of functional moieties onto the molecular brushes
A SOCIAL SURVEY ON COMMUNITY RESPONSE TO ROAD TRAFFIC NOISE IN HANOI
Joint Research on Environmental Science and Technology for the Eart
Innovative in silico approaches to address avian flu using grid technology
The recent years have seen the emergence of diseases which have spread very
quickly all around the world either through human travels like SARS or animal
migration like avian flu. Among the biggest challenges raised by infectious
emerging diseases, one is related to the constant mutation of the viruses which
turns them into continuously moving targets for drug and vaccine discovery.
Another challenge is related to the early detection and surveillance of the
diseases as new cases can appear just anywhere due to the globalization of
exchanges and the circulation of people and animals around the earth, as
recently demonstrated by the avian flu epidemics. For 3 years now, a
collaboration of teams in Europe and Asia has been exploring some innovative in
silico approaches to better tackle avian flu taking advantage of the very large
computing resources available on international grid infrastructures. Grids were
used to study the impact of mutations on the effectiveness of existing drugs
against H5N1 and to find potentially new leads active on mutated strains. Grids
allow also the integration of distributed data in a completely secured way. The
paper presents how we are currently exploring how to integrate the existing
data sources towards a global surveillance network for molecular epidemiology.Comment: 7 pages, submitted to Infectious Disorders - Drug Target
Biodiversity of Tintinnids (Tintinnida) in Khanh Hoa - Binh Thuan waters
Tintinnidsarean important protozoan group in the aquatic food web and had been widely studied in various waters. There are about 1000 known species in the world. However, there have beenvery few taxonomic studies in Vietnam and therefore the number of Tintinnid taxa and their distribution are poorly known. Thepresent study documents 65 tintinnids species belonging to 30 genera and 13 families in samples collected from Khanh Hoa - Binh Thuan waters in 2016 and 2017. There were 17 new taxa records for Vietnam protozoan fauna, raising the number of tintinnids recorded in Vietnam to 125 taxa. Tintinnid assemblages in Khanh Hoa-Binh Thuan waters shared about 17 species with Ha Long Bay, 32 species with Con Co island and 26 species with coastal waters of South Vietnam. Analysis of species diversity shows that the Shannon diversity index H' varied from 1.5 to 2.6. Distribution of species numbers and diversity in the Khanh Hoa - Binh Thuan waters revealed possible combined effects of hydrographical activities (e.g. upwelling), Mekong river influent (e.g. salinity), and food available on tintinnid communities. Citation: Nguyen Thi Kieu, Phan Tan Luom, Nguyen Tam Vinh, Nguyen Ngoc Lam, Josepth P. Montoya, Doan Nhu Hai, 2017. Biodiversity of Tintinnids (Tintinnida) in Khanh Hoa - Binh Thuan waters. Tap chi Sinh hoc, 39(4): 421-433. DOI: 10.15625/0866-7160/v39n4.11033. *Corresponding author:[email protected] Received 19 September 2017, accepted 12 December 2017
High Energy Scattering in the Quasi-Potential Approach
Asymptotic behavior of the scattering amplitude for two scalar particles by
scalar, vector and tensor exchanges at high energy and fixed momentum transfers
is reconsidered in quantum field theory. In the framework of the
quasi-potential approach and the modified perturbation theory a systematic
scheme of finding the leading eikonal scattering amplitudes and its corrections
are developed and constructed.The connection between the solutions obtained by
quasi-potential and functional approaches is also discussed.The first
correction to leading eikonal amplitude is found. Keywords: Eikonal scattering
theory, Quantum gravity.Comment: 18 pages. arXiv admin note: substantial text overlap with
arXiv:0804.343
Priorities for Pig Research in Southeast Asia and the Pacific to 2010
Livestock Production/Industries, Research and Development/Tech Change/Emerging Technologies,
Challenges to Accurate Estimation of Methane Emission from Septic Tanks with Long Emptying Intervals
Septic tanks in low- and middle-income countries are often not emptied for a long time, potentially resulting in poor pollutant removal efficiency and increased greenhouse gas emissions, including methane (CH₄). We examined the impact of long emptying intervals (4.0–23 years) on the biochemical oxygen demand (BOD) removal efficiency of 15 blackwater septic tanks and the CH₄ emission rates of 23 blackwater septic tanks in Hanoi. The average BOD removal efficiency was 37% (−2–65%), and the average CH₄ emission rate was 10.9 (2.2–26.8) g/(cap·d). The emptying intervals were strongly negatively correlated with BOD removal efficiency (R = −0.676, p = 0.006) and positively correlated with CH₄ emission rates (R = 0.614, p = 0.001). CH₄ emission rates were positively correlated with sludge depth (R = 0.596, p = 0.002), but against expectation, negatively correlated with BOD removal efficiency (R = −0.219, p = 0.451). These results suggest that shortening the emptying interval improves the BOD removal efficiency and reduces the CH₄ emission rate. Moreover, the CH₄ emission estimation of the Intergovernmental Panel on Climate Change, which is a positive conversion of BOD removal, might be inaccurate for septic tanks with long emptying intervals. Our findings suggest that emptying intervals, sludge depth, and per-capita emission factors reflecting long emptying intervals are potential parameters for accurately estimating CH₄ emissions from septic tanks
Recommended from our members
Habitat Delineation in Highly Variable Marine Environments
The structure of the phytoplankton community in surface waters is the consequence of complex interactions between the physical and chemical properties of the upper water column as well as the interaction within the general biological community. Understanding the structure of phytoplankton communities is especially challenging in highly variable and dynamic marine environments. A variety of strategies have been employed to delineate marine planktonic habitats, including both biogeochemical and water-mass-based approaches. These methods have led to fundamental improvements in our understanding of marine phytoplankton distributions, but they are often difficult to apply to systems with physical and chemical properties and forcings that vary greatly over relatively short spatial or temporal scales. In this study, we have developed a method of dynamic habitat delineation based on environmental variables that are biologically relevant, that integrate over varying time scales, and that are derived from standard oceanographic measurements. As a result, this approach is widely applicable, simple to implement, and effective in resolving the spatial distribution of phytoplankton communities. As a test of our approach, we have applied it to the Amazon River-influenced Western Tropical North Atlantic (WTNA) and to the South China Sea (SCS), which is influenced by both the Mekong River and seasonal coastal upwelling. These two systems differ substantially in their spatial and temporal scales, nutrient sources/sinks, and hydrographic complexity, providing an effective test of the applicability of our analysis. Despite their significant differences in scale and character, our approach generated statistically robust habitat classifications that were clearly relevant to surface phytoplankton communities. Additional analysis of the habitat-defining variables themselves can provide insight into the processes acting to shape phytoplankton communities in each habitat. Finally, by demonstrating the biological relevance of the generated habitats, we gain insights into the conditions promoting the growth of distinct communities and the factors that lead to mismatches between environmental conditions and phytoplankton community structure
Optical Propagation and Communication
Contains reports on four research projects.National Science Foundation (Grant ECS81-20637)U.S. Navy - Office of Naval Research (Contract N00014-81-K-0662)U.S. Army Research Office - Durham (Contract DAAG29-80-K-0022)U.S. Navy - Office of Naval Research (Contract N00014-80-C-0941
- …