531 research outputs found

    Trends in incidence and histological pattern of thyroid cancer in Ho Chi Minh City, Vietnam (1996–2015): a population-based study

    Full text link
    Background The burden and trend of thyroid cancer in Vietnam have not been well documented. This study aimed to investigate the trends in incidence and histological pattern of thyroid cancer in Ho Chi Minh City from 1996 to 2015. Methods A population-based study retrieved data from the Ho Chi Minh City Cancer Registry during 1996–2015. Trends in the incidence of thyroid cancer were investigated based on age, gender, and histology for each 5-year period. Annual percentage change (APC) in incidence rates was estimated using Joinpoint regression analysis. Results In the study period, there were 5953 thyroid cancer cases (men-to-women ratio 1:4.5) newly diagnosed in Ho Chi Minh City with the mean age of 42.9 years (±14.9 years). The age-standardized incidence rate of thyroid cancer increased from 2.4 per 100,000 during 1996–2000 (95% confidence interval [95% CI]: 2.2–2.6) to 7.5 per 100,000 during 2011–2015 (95% CI: 7.3–7.9), corresponded to an overall APC of 8.7 (95% CI 7.6–9.9). The APC in men and women was 6.2 (95% CI: 4.2–8.2) and 9.2 (95% CI: 8.0–10.4), respectively. The incidence rate in the < 45 years age group was the highest diagnosed overall and increased significantly in both men (APC 11.0) and women (APC 10.1). Both genders shared similar distribution of subtype incidences, with papillary thyroid cancer constituted the most diagnosed (73.3% in men and 85.2% in women). The papillary thyroid cancer observed a markedly increase overall (APC of 10.7 (95% CI 9.3–12.0)). Conclusions There were appreciable increases in the age-standardized incidence rate of thyroid cancer in both genders, mainly contributed by the papillary subtype. The age of patients at diagnosis decreased gradually. The widespread utilization of advanced diagnostic techniques and healthcare accessibility improvement might play a potential role in these trends. Further investigations are needed to comprehend the risk factors and trends fully

    Trends in breast cancer incidence in Ho Chi Minh City 1996-2015: A registry-based study.

    Full text link
    The burden of breast cancer in Vietnam has not been documented. This study sought to estimate the incidence of breast cancer in Ho Chi Minh City, the largest economic center of Vietnam, from 1996 to 2015. This was a population-based study using the Ho Chi Minh City Cancer Registry as a source of data (coverage period: 1996-2015). The Registry adopted the International Classification of Diseases for Oncology, 3rd Edition for the classification of primary sites and morphology, and guidelines from the International Agency for Research on Cancer and the International Association of Cancer Registries. Using the population statistics from census data of Ho Chi Minh City, the point incidence of breast cancer for 5-year period was estimated. Based on the national population, we calculated the age-standardized rate (ASR) of breast cancer between 1996 and 2015. Overall 14,222 new cases of breast cancer (13,948 women, or 98%) had been registered during the 1996-2015 period; among whom, just over half (52%) were in the 2nd stage and 26% in the 3rd and 4th stages. In women, the median age at diagnosis was 50 years and there was a slight increase over time. The ASR of breast cancer during the 2011-2015 period was 107.4 cases per 100,000 women, representing an increase of 70% compared to the rate during the 1996-2000 period. In men, there was also a significant increase in the ASR: from 1.13 during the 1996-2001 period to 2.32 per 100,000 men during the 2011-2015 period. These very first data from Vietnam suggest that although the incidence of breast cancer in Vietnam remains relatively low, it has increased over time

    On the theory of tumor self-seeding: implications for metastasis progression in humans

    Get PDF
    Metastasis remains the leading cause of death among cancer patients because few effective treatment options are available. A recent paper proposes a new twist on metastasis. The paper shows that circulating tumor cells can return to the primary tumor, a process termed tumor self-seeding or cross-seeding, and that this helps breeding tumor cells that give rise to aggressive metastatic variants. A viewpoint presented here addresses the implications of these studies for human cancer metastasis

    Mussel-Inspired Anisotropic Nanocellulose and Silver Nanoparticle Composite with Improved Mechanical Properties, Electrical Conductivity and Antibacterial Activity

    Get PDF
    Materials for wearable devices, tissue engineering and bio-sensing applications require both antibacterial activity to prevent bacterial infection and biofilm formation, and electrical conductivity to electric signals inside and outside of the human body. Recently, cellulose nanofibers have been utilized for various applications but cellulose itself has neither antibacterial activity nor conductivity. Here, an antibacterial and electrically conductive composite was formed by generating catechol mediated silver nanoparticles (AgNPs) on the surface of cellulose nanofibers. The chemically immobilized catechol moiety on the nanofibrous cellulose network reduced Ag+ to form AgNPs on the cellulose nanofiber. The AgNPs cellulose composite showed excellent antibacterial efficacy against both Gram-positive and Gram-negative bacteria. In addition, the catechol conjugation and the addition of AgNP induced anisotropic self-alignment of the cellulose nanofibers which enhances electrical and mechanical properties of the composite. Therefore, the composite containing AgNPs and anisotropic aligned the cellulose nanofiber may be useful for biomedical applications.open11128sciescopu

    Organotypic Brain Cultures for Metastasis Research

    Get PDF
    We thank members of Brain Metastasis Group for critical discussion. Research in the Brain Metastasis Group is supported by MINECO-Retos SAF2017-89643-R (M.V.), Cancer Research Institute CLIP Award 2018 (M.V.), AECC (GCTRA16015SEOA) (M.V.), Bristol-Myers Squibb Melanoma Research Alliance Young Investigator Award 2017 (M.V.), Beug Foundation’s Prize for Metastasis Research 2017 (M.V.), Worldwide Cancer Research (19-0177) (M.V.), H2020-FETOPEN (828972) (M.V.), Fundación Ramón Areces (CIVP19S8163), and La Caixa-Severo Ochoa International PhD Program Fellowship (L.Z.). M.V. is a Ramón y Cajal Investigator (RYC-2013-13365) and an EMBO YIP investigator.N

    Interaction of the Coronavirus Infectious Bronchitis Virus Membrane Protein with β-Actin and Its Implication in Virion Assembly and Budding

    Get PDF
    Coronavirus M protein is an essential component of virion and plays pivotal roles in virion assembly, budding and maturation. The M protein is integrated into the viral envelope with three transmembrane domains flanked by a short amino-terminal ectodomain and a large carboxy-terminal endodomain. In this study, we showed co-purification of the M protein from coronavirus infectious bronchitis virus (IBV) with actin. To understand the cellular factors that may be involved in virion assembly, budding and maturation processes, IBV M was used as the bait in a yeast two-hybrid screen, resulting in the identification of β-actin as a potentially interacting partner. This interaction was subsequently confirmed by coimmunoprecipitation and immunofluorescence microscopy in mammalian cells, and mutation of amino acids A159 and K160 on the M protein abolished the interaction. Introduction of the A159-K160 mutation into an infectious IBV clone system blocks the infectivity of the clone, although viral RNA replication and subgenomic mRNA transcription were actively detected. Disruption of actin filaments with cell-permeable agent cytochalasin D at early stages of the infection cycle led to the detection of viral protein synthesis in infected cells but not release of virus particles to the cultured media. However, the same treatment at late stages of the infection cycle did not affect the release of virus particles to the media, suggesting that disruption of the actin filaments might block virion assembly and budding, but not release of the virus particles. This study reveals an essential function of actin in the replication cycle of coronavirus

    A Small Molecule Inhibitor of PDK1/PLC gamma 1 Interaction Blocks Breast and Melanoma Cancer Cell Invasion

    Get PDF
    Strong evidence suggests that phospholipase Cγ1 (PLCγ1) is a suitable target to counteract tumourigenesis and metastasis dissemination. We recently identified a novel signalling pathway required for PLCγ1 activation which involves formation of a protein complex with 3-phosphoinositide-dependent protein kinase 1 (PDK1). In an effort to define novel strategies to inhibit PLCγ1-dependent signals we tested here whether a newly identified and highly specific PDK1 inhibitor, 2-O-benzyl-myo-inositol 1,3,4,5,6-pentakisphosphate (2-O-Bn-InsP5), could affect PDK1/PLCγ1 interaction and impair PLCγ1-dependent cellular functions in cancer cells. Here, we demonstrate that 2-O-Bn-InsP5 interacts specifically with the pleckstrin homology domain of PDK1 and impairs formation of a PDK1/PLCγ1 complex. 2-O-Bn-InsP5 is able to inhibit the epidermal growth factor-induced PLCγ1 phosphorylation and activity, ultimately resulting in impaired cancer cell migration and invasion. Importantly, we report that 2-O-Bn-InsP5 inhibits cancer cell dissemination in zebrafish xenotransplants. This work demonstrates that the PDK1/PLCγ1 complex is a potential therapeutic target to prevent metastasis and it identifies 2-O-Bn-InsP5 as a leading compound for development of anti-metastatic drugs

    Epigenetic expansion of VHL-HIF signal output drives multiorgan metastasis in renal cancer.

    Get PDF
    Inactivation of the von Hippel-Lindau tumor suppressor gene, VHL, is an archetypical tumor-initiating event in clear cell renal carcinoma (ccRCC) that leads to the activation of hypoxia-inducible transcription factors (HIFs). However, VHL mutation status in ccRCC is not correlated with clinical outcome. Here we show that during ccRCC progression, cancer cells exploit diverse epigenetic alterations to empower a branch of the VHL-HIF pathway for metastasis, and the strength of this activation is associated with poor clinical outcome. By analyzing metastatic subpopulations of VHL-deficient ccRCC cells, we discovered an epigenetically altered VHL-HIF response that is specific to metastatic ccRCC. Focusing on the two most prominent pro-metastatic VHL-HIF target genes, we show that loss of Polycomb repressive complex 2 (PRC2)-dependent histone H3 Lys27 trimethylation (H3K27me3) activates HIF-driven chemokine (C-X-C motif) receptor 4 (CXCR4) expression in support of chemotactic cell invasion, whereas loss of DNA methylation enables HIF-driven cytohesin 1 interacting protein (CYTIP) expression to protect cancer cells from death cytokine signals. Thus, metastasis in ccRCC is based on an epigenetically expanded output of the tumor-initiating pathway
    corecore