37,365 research outputs found

    Enhanced thermoelectric figure of merit in vertical graphene junctions

    Full text link
    In this work, we investigate thermoelectric properties of junctions consisting of two partially overlapped graphene sheets coupled to each other in the cross-plane direction. It is shown that because of the weak van-der Waals interactions between graphene layers, the phonon conductance in these junctions is strongly reduced, compared to that of single graphene layer structures, while their electrical performance is weakly affected. By exploiting this effect, we demonstrate that the thermoelectric figure of merit can reach values higher than 1 at room temperature in junctions made of gapped graphene materials, for instance, graphene nanoribbons and graphene nanomeshes. The dependence of thermoelectric properties on the junction length is also discussed. This theoretical study hence suggests an efficient way to enhance thermoelectric efficiency of graphene devices.Comment: 6 pages, 4 figures, submitte

    Strong disorder renormalization group on fractal lattices: Heisenberg models and magnetoresistive effects in tight binding models

    Full text link
    We use a numerical implementation of the strong disorder renormalization group (RG) method to study the low-energy fixed points of random Heisenberg and tight-binding models on different types of fractal lattices. For the Heisenberg model new types of infinite disorder and strong disorder fixed points are found. For the tight-binding model we add an orbital magnetic field and use both diagonal and off-diagonal disorder. For this model besides the gap spectra we study also the fraction of frozen sites, the correlation function, the persistent current and the two-terminal current. The lattices with an even number of sites around each elementary plaquette show a dominant ϕ0=h/e\phi_0=h/e periodicity. The lattices with an odd number of sites around each elementary plaquette show a dominant ϕ0/2\phi_0/2 periodicity at vanishing diagonal disorder, with a positive weak localization-like magnetoconductance at infinite disorder fixed points. The magnetoconductance with both diagonal and off-diagonal disorder depends on the symmetry of the distribution of on-site energies.Comment: 19 pages, 20 figure

    Seafood Import Demand in the Caribbean Region

    Get PDF
    Cointegration analysis and an Error Correction Model are used to estimate aggregate seafood import demand functions for selected Caribbean countries. The results show that seafood import demand is price elastic. Exchange rate has a negative effect on seafood import quantity. Income and tourist arrivals have positive impacts on seafood imports. Seafood import negatively affects domestic fishery production. Tariff and production support policies reduce seafood imports, and enhance domestic production. Both policies increase producer surplus, but a tariff reduces consumer surplus, and a production expansion policy increases consumer surplus. A production expansion subsidy is a more appropriate policy instrument than a tariff for small open economies, like the Caribbean States, to increase domestic production and generate net economic surplus.Seafood, import demand, cointegration, economic surplus, Agricultural and Food Policy, International Relations/Trade, Q17, Q22, C32,

    Dissipation in a superconducting artificial atom due to a single non-equilibrium quasiparticle

    Full text link
    We study a superconducting artificial atom which is represented by a single Josephson junction or a Josephson junction chain, capacitively coupled to a coherently driven transmission line, and which contains exactly one residual quasiparticle (or up to one quasiparticle per island in a chain). We study the dissipation in the atom induced by the quasiparticle tunneling, taking into account the quasiparticle heating by the drive. We calculate the transmission coefficient in the transmission line for drive frequencies near resonance and show that, when the artificial atom spectrum is nearly harmonic, the intrinsic quality factor of the resonance increases with the drive power. This counterintuitive behavior is due to the energy dependence of the quasiparticle density of states

    Geometrically nonlinear isogeometric analysis of laminated composite plates based on higher-order shear deformation theory

    Full text link
    In this paper, we present an effectively numerical approach based on isogeometric analysis (IGA) and higher-order shear deformation theory (HSDT) for geometrically nonlinear analysis of laminated composite plates. The HSDT allows us to approximate displacement field that ensures by itself the realistic shear strain energy part without shear correction factors. IGA utilizing basis functions namely B-splines or non-uniform rational B-splines (NURBS) enables to satisfy easily the stringent continuity requirement of the HSDT model without any additional variables. The nonlinearity of the plates is formed in the total Lagrange approach based on the von-Karman strain assumptions. Numerous numerical validations for the isotropic, orthotropic, cross-ply and angle-ply laminated plates are provided to demonstrate the effectiveness of the proposed method

    Model for Anisotropic Directed Percolation

    Full text link
    We propose a simulation model to study the properties of directed percolation in two-dimensional (2D) anisotropic random media. The degree of anisotropy in the model is given by the ratio μ\mu between the axes of a semi-ellipse enclosing the bonds that promote percolation in one direction. At percolation, this simple model shows that the average number of bonds per site in 2D is an invariant equal to 2.8 independently of μ\mu. This result suggests that Sinai's theorem proposed originally for isotropic percolation is also valid for anisotropic directed percolation problems. The new invariant also yields a constant fractal dimension Df1.71D_{f} \sim 1.71 for all μ\mu, which is the same value found in isotropic directed percolation (i.e., μ=1\mu = 1).Comment: RevTeX, 9 pages, 3 figures. To appear in Phys.Rev.
    corecore