476 research outputs found

    Thermoresistance of p-Type 4H–SiC Integrated MEMS Devices for High-Temperature Sensing

    Get PDF
    There is an increasing demand for the development and integration of multifunctional sensing modules into power electronic devices that can operate in high temperature environments. Here, the authors demonstrate the tunable thermoresistance of p‐type 4H–SiC for a wide temperature range from the room temperature to above 800 K with integrated flow sensing functionality into a single power electronic chip. The electrical resistance of p‐type 4H–SiC is found to exponentially decrease with increasing temperature to a threshold temperature of 536 K. The temperature coefficient of resistance (TCR) shows a large and negative value from −2100 to −7600 ppm K−1, corresponding to a thermal index of 625 K. From the threshold temperature of 536–846 K, the electrical resistance shows excellent linearity with a positive TCR value of 900 ppm K−1. The authors successfully demonstrate the integration of p–4H–SiC flow sensing functionality with a high sensitivity of 1.035 μA(m s−1)−0.5 mW−1. These insights in the electrical transport of p–4H–SiC aid to improve the performance of p–4H–SiC integrated temperature and flow sensing systems, as well as the design consideration and integration of thermal sensors into 4H–SiC power electronic systems operating at high temperatures of up to 846 K

    Prediction of shoreline changes in Almanarre beach using geospatial techniques

    Get PDF
    207-217In this study, the remote sensing and Geographic Information System (GIS) techniques coupled with the Digital Shoreline Analysis System (DSAS) is applied to detect the historical shoreline changes as well as to predict the future shoreline position along Almanarre beach which is being threatened by severe erosion. The results show that Almanarre beach suffered erosion with an average annual change rate of about -0.24 m/year over the period of 1973-2015. The most severe erosion was observed near Landmark B17 with the maximum erosion rate of -0.86 m/year. Moreover, the shoreline change in 2020 and 2050 are predicted at approximately -0.05 m/year and -0.22 m/year, respectively. The areas around Landmarks B06-08 and Landmarks B16-18 will be eroded with the maximum recession rates of -0.89 m/year and -0.94 m/year, respectively. This research proves that the combination of geospatial techniques and numerical model can be a reliable approach for investigating the shoreline change trend

    A hot-film air flow sensor for elevated temperatures

    Get PDF
    We report a novel packaging and experimental technique for characterizing thermal flow sensors at high temperatures. This paper first reports the fabrication of 3C-SiC (silicon carbide) on a glass substrate via anodic bonding, followed by the investigation of thermoresistive and Joule heating effects in the 3C-SiC nano-thin film heater. The high thermal coefficient of resistance of approximately −20 720 ppm/K at ambient temperature and −9287 ppm/K at 200 °C suggests the potential use of silicon carbide for thermal sensing applications in harsh environments. During the Joule heating test, a high-temperature epoxy and a brass metal sheet were utilized to establish the electric conduction between the metal electrodes and SiC heater inside a temperature oven. In addition, the metal wires from the sensor to the external circuitry were protected by a fiberglass insulating sheath to avoid short circuit. The Joule heating test ensured the stability of mechanical and Ohmic contacts at elevated temperatures. Using a hot-wire anemometer as a reference flow sensor, calibration tests were performed at 25 °C, 35 °C, and 45 °C. Then, the SiC hot-film sensor was characterized for a range of low air flow velocity, indicating a sensitivity of 5 mm−1 s. The air flow was established by driving a metal propeller connected to a DC motor and controlled by a microcontroller. The materials, metallization, and interconnects used in our flow sensor were robust and survived temperatures of around 200 °
    corecore