345 research outputs found

    Cochrane column

    Get PDF

    Practical realisation and elimination of an ECC-related software bug attack

    Get PDF
    We analyse and exploit implementation features in OpenSSL version 0.9.8g which permit an attack against ECDH-based functionality. The attack, although more general, can recover the entire (static) private key from an associated SSL server via 633633 adaptive queries when the NIST curve P-256 is used. One can view it as a software-oriented analogue of the bug attack concept due to Biham et al. and, consequently, as the first bug attack to be successfully applied against a real-world system. In addition to the attack and a posteriori countermeasures, we show that formal verification, while rarely used at present, is a viable means of detecting the features which the attack hinges on. Based on the security implications of the attack and the extra justification posed by the possibility of intentionally incorrect implementations in collaborative software development, we conclude that applying and extending the coverage of formal verification to augment existing test strategies for OpenSSL-like software should be deemed a worthwhile, long-term challenge.This work has been supported in part by EPSRC via grant EP/H001689/1 and by project SMART, funded by ENIAC Joint Undertaking (GA 120224)

    Rapid hepatic clearance of full length CCN-2/CTGF: a putative role for LRP1-mediated endocytosis

    Get PDF
    CCN-2 (connective tissue growth factor; CTGF) is a key factor in fibrosis. Plasma CCN-2 has biomarker potential in numerous fibrotic disorders, but it is unknown which pathophysiological factors determine plasma CCN-2 levels. The proteolytic amino-terminal fragment of CCN-2 is primarily eliminated by the kidney. Here, we investigated elimination and distribution profiles of full length CCN-2 by intravenous administration of recombinant CCN-2 to rodents. After bolus injection in mice, we observed a large initial distribution volume (454 mL/kg) and a fast initial clearance (120 mL/kg/min). Immunosorbent assay and immunostaining showed that CCN-2 distributed mainly to the liver and was taken up by hepatocytes. Steady state clearance in rats, determined by continuous infusion of CCN-2, was fast (45 mL/kg/min). Renal CCN-2 clearance, determined by arterial and renal vein sampling, accounted for only 12 % of total clearance. Co-infusion of CCN-2 with receptor-associated protein (RAP), an antagonist of LDL-receptor family proteins, showed that RAP prolonged CCN-2 half-life and completely prevented CCN-2 internalization by hepatocytes. This suggests that hepatic uptake of CCN-2 is mediated by a RAP-sensitive mechanism most likely involving LRP1, a member of the LDL-receptor family involved in hepatic clearance of various plasma proteins. Surface plasmon resonance binding studies confirmed that CCN-2 is an LRP1 ligand. Co-infusion of CCN-2 with an excess of the heparan sulphate-binding protamine lowered the large initial distribution volume of CCN-2 by 88 % and reduced interstitial staining of CCN-2, suggesting binding of CCN-2 to heparan sulphate proteoglycans (HSPGs). Protamine did not affect clearance rate, indicating that RAP-sensitive clearance of CCN-2 is HSPG independent. In conclusion, unlike its amino-terminal fragment which is cleared by the kidney, fu

    Instabilities in the Flux Line Lattice of Anisotropic Superconductors

    Full text link
    The stability of the flux line lattice has been investigated within anisotropic London theory. This is the first full-scale investigation of instabilities in the `chain' state. It has been found that the lattice is stable at large fields, but that instabilities occur as the field is reduced. The field at which these instabilities first arise, b(ϵ,θ)b^*(\epsilon,\theta), depends on the anisotropy ϵ\epsilon and the angle θ\theta at which the lattice is tilted away from the cc-axis. These instabilities initially occur at wavevector k(ϵ,θ)k^*(\epsilon,\theta), and the component of kk^* along the average direction of the flux lines, kzk_z, is always finite. As the instability occurs at finite kzk_z the dependence of the cutoff on kzk_z is important, and we have used a cutoff suggested by Sudb\ospace and Brandt. The instabilities only occur for values of the anisotropy ϵ\epsilon appropriate to a material like BSCCO, and not for anisotropies more appropriate to YBCO. The lower critical field Hc1(ϕ)H_{c_1}(\phi) is calculated as a function of the angle ϕ\phi at which the applied field is tilted away from the crystal axis. The presence of kinks in Hc1(ϕ)H_{c_1}(\phi) is seen to be related to instabilities in the equilibrium flux line structure.Comment: Extensively revised paper, with modified analysis of elastic instabilities. Calculation of the lower critical field is included, and the presence of kinks in Hc1H_{c_1} is seen to be related to the elastic instabilities. 29 pages including 16 figures, LaTeX with epsf styl

    A survey for hydroxyl in the THOR pilot region around W43

    Get PDF
    We report on observations of the hydroxyl radical (OH) within The H{\sc I}, OH Recombination line survey (THOR) pilot region. The region is bounded approximately between Galactic coordinates l=29.2 to 31.5 ∘ and b=-1.0 to +1.0 ∘ and includes the high-mass star forming region W43. We identify 103 maser sites, including 72 with 1612\,MHz masers, 42 showing masers in either of the main line transitions at 1665 and 1667\,MHz and four showing 1720\,MHz masers. Most maser sites with either main-line or 1720\,MHz emission are associated with star formation, whereas most of the 1612\,MHz masers are associated with evolved stars. We find that nearly all of the main-line maser sites are co-spatial with an infrared source, detected by GLIMPSE. We also find diffuse OH emission, as well as OH in absorption towards selected unresolved or partially resolved sites. Extended OH absorption is found towards the well known star forming complex W43 Main

    The Landau Pole and ZZ^{\prime} decays in the 331 bilepton model

    Full text link
    We calculate the decay widths and branching ratios of the extra neutral boson ZZ^{\prime} predicted by the 331 bilepton model in the framework of two different particle contents. These calculations are performed taken into account oblique radiative corrections, and Flavor Changing Neutral Currents (FCNC) under the ansatz of Matsuda as a texture for the quark mass matrices. Contributions of the order of 10110210^{-1}-10^{-2} are obtained in the branching ratios, and partial widths about one order of magnitude bigger in relation with other non- and bilepton models are also obtained. A Landau-like pole arise at 3.5 TeV considering the full particle content of the minimal model (MM), where the exotic sector is considered as a degenerated spectrum at 3 TeV scale. The Landau pole problem can be avoid at the TeV scales if a new leptonic content running below the threshold at % 3 TeV is implemented as suggested by other authors.Comment: 20 pages, 5 figures, LaTeX2

    Stress corrosion cracking in Al-Zn-Mg-Cu aluminum alloys in saline environments

    Get PDF
    Copyright 2013 ASM International. This paper was published in Metallurgical and Materials Transactions A, 44A(3), 1230 - 1253, and is made available as an electronic reprint with the permission of ASM International. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplications of any material in this paper for a fee or for commercial purposes, or modification of the content of this paper are prohibited.Stress corrosion cracking of Al-Zn-Mg-Cu (AA7xxx) aluminum alloys exposed to saline environments at temperatures ranging from 293 K to 353 K (20 °C to 80 °C) has been reviewed with particular attention to the influences of alloy composition and temper, and bulk and local environmental conditions. Stress corrosion crack (SCC) growth rates at room temperature for peak- and over-aged tempers in saline environments are minimized for Al-Zn-Mg-Cu alloys containing less than ~8 wt pct Zn when Zn/Mg ratios are ranging from 2 to 3, excess magnesium levels are less than 1 wt pct, and copper content is either less than ~0.2 wt pct or ranging from 1.3 to 2 wt pct. A minimum chloride ion concentration of ~0.01 M is required for crack growth rates to exceed those in distilled water, which insures that the local solution pH in crack-tip regions can be maintained at less than 4. Crack growth rates in saline solution without other additions gradually increase with bulk chloride ion concentrations up to around 0.6 M NaCl, whereas in solutions with sufficiently low dichromate (or chromate), inhibitor additions are insensitive to the bulk chloride concentration and are typically at least double those observed without the additions. DCB specimens, fatigue pre-cracked in air before immersion in a saline environment, show an initial period with no detectible crack growth, followed by crack growth at the distilled water rate, and then transition to a higher crack growth rate typical of region 2 crack growth in the saline environment. Time spent in each stage depends on the type of pre-crack (“pop-in” vs fatigue), applied stress intensity factor, alloy chemistry, bulk environment, and, if applied, the external polarization. Apparent activation energies (E a) for SCC growth in Al-Zn-Mg-Cu alloys exposed to 0.6 M NaCl over the temperatures ranging from 293 K to 353 K (20 °C to 80 °C) for under-, peak-, and over-aged low-copper-containing alloys (~0.8 wt pct), they are typically ranging from 20 to 40 kJ/mol for under- and peak-aged alloys, and based on limited data, around 85 kJ/mol for over-aged tempers. This means that crack propagation in saline environments is most likely to occur by a hydrogen-related process for low-copper-containing Al-Zn-Mg-Cu alloys in under-, peak- and over-aged tempers, and for high-copper alloys in under- and peak-aged tempers. For over-aged high-copper-containing alloys, cracking is most probably under anodic dissolution control. Future stress corrosion studies should focus on understanding the factors that control crack initiation, and insuring that the next generation of higher performance Al-Zn-Mg-Cu alloys has similar longer crack initiation times and crack propagation rates to those of the incumbent alloys in an over-aged condition where crack rates are less than 1 mm/month at a high stress intensity factor
    corecore