410 research outputs found

    Sound-Dr: Reliable Sound Dataset and Baseline Artificial Intelligence System for Respiratory Illnesses

    Full text link
    As the burden of respiratory diseases continues to fall on society worldwide, this paper proposes a high-quality and reliable dataset of human sounds for studying respiratory illnesses, including pneumonia and COVID-19. It consists of coughing, mouth breathing, and nose breathing sounds together with metadata on related clinical characteristics. We also develop a proof-of-concept system for establishing baselines and benchmarking against multiple datasets, such as Coswara and COUGHVID. Our comprehensive experiments show that the Sound-Dr dataset has richer features, better performance, and is more robust to dataset shifts in various machine learning tasks. It is promising for a wide range of real-time applications on mobile devices. The proposed dataset and system will serve as practical tools to support healthcare professionals in diagnosing respiratory disorders. The dataset and code are publicly available here: https://github.com/ReML-AI/Sound-Dr/.Comment: 9 pages, PHMAP2023, PH

    MPCNN: A Novel Matrix Profile Approach for CNN-based Sleep Apnea Classification

    Full text link
    Sleep apnea (SA) is a significant respiratory condition that poses a major global health challenge. Previous studies have investigated several machine and deep learning models for electrocardiogram (ECG)-based SA diagnoses. Despite these advancements, conventional feature extractions derived from ECG signals, such as R-peaks and RR intervals, may fail to capture crucial information encompassed within the complete PQRST segments. In this study, we propose an innovative approach to address this diagnostic gap by delving deeper into the comprehensive segments of the ECG signal. The proposed methodology draws inspiration from Matrix Profile algorithms, which generate an Euclidean distance profile from fixed-length signal subsequences. From this, we derived the Min Distance Profile (MinDP), Max Distance Profile (MaxDP), and Mean Distance Profile (MeanDP) based on the minimum, maximum, and mean of the profile distances, respectively. To validate the effectiveness of our approach, we use the modified LeNet-5 architecture as the primary CNN model, along with two existing lightweight models, BAFNet and SE-MSCNN, for ECG classification tasks. Our extensive experimental results on the PhysioNet Apnea-ECG dataset revealed that with the new feature extraction method, we achieved a per-segment accuracy up to 92.11 \% and a per-recording accuracy of 100\%. Moreover, it yielded the highest correlation compared to state-of-the-art methods, with a correlation coefficient of 0.989. By introducing a new feature extraction method based on distance relationships, we enhanced the performance of certain lightweight models, showing potential for home sleep apnea test (HSAT) and SA detection in IoT devices. The source code for this work is made publicly available in GitHub: https://github.com/vinuni-vishc/MPCNN-Sleep-Apnea

    Enhancing Few-shot Image Classification with Cosine Transformer

    Full text link
    This paper addresses the few-shot image classification problem, where the classification task is performed on unlabeled query samples given a small amount of labeled support samples only. One major challenge of the few-shot learning problem is the large variety of object visual appearances that prevents the support samples to represent that object comprehensively. This might result in a significant difference between support and query samples, therefore undermining the performance of few-shot algorithms. In this paper, we tackle the problem by proposing Few-shot Cosine Transformer (FS-CT), where the relational map between supports and queries is effectively obtained for the few-shot tasks. The FS-CT consists of two parts, a learnable prototypical embedding network to obtain categorical representations from support samples with hard cases, and a transformer encoder to effectively achieve the relational map from two different support and query samples. We introduce Cosine Attention, a more robust and stable attention module that enhances the transformer module significantly and therefore improves FS-CT performance from 5% to over 20% in accuracy compared to the default scaled dot-product mechanism. Our method performs competitive results in mini-ImageNet, CUB-200, and CIFAR-FS on 1-shot learning and 5-shot learning tasks across backbones and few-shot configurations. We also developed a custom few-shot dataset for Yoga pose recognition to demonstrate the potential of our algorithm for practical application. Our FS-CT with cosine attention is a lightweight, simple few-shot algorithm that can be applied for a wide range of applications, such as healthcare, medical, and security surveillance. The official implementation code of our Few-shot Cosine Transformer is available at https://github.com/vinuni-vishc/Few-Shot-Cosine-Transforme

    Theoretical predictions of melting behaviors of hcp iron up to 4000 GPa

    Full text link
    The high-pressure melting diagram of iron is a vital ingredient for the geodynamic modeling of planetary interiors. Nonetheless, available data for molten iron show an alarming discrepancy. Herein, we propose an efficient one-phase approach to capture the solid-liquid transition of iron under extreme conditions. Our basic idea is to extend the statistical moment method to determine the density of iron in the TPa region. On that basis, we adapt the work-heat equivalence principle to appropriately link equation-of-state parameters with melting properties. This strategy allows explaining cutting-edge experimental and ab initio results without massive computational workloads. Our theoretical calculations would be helpful to constrain the chemical composition, internal dynamics, and thermal evolution of the Earth and super-Earths

    Citric Acid Based Pre-SEI for Improvement of Silicon Electrodes in Lithium Ion Batteries

    Get PDF
    Silicon electrodes are of interest to the lithium ion battery industry due to high gravimetric capacity (∌3580 mAh/g), natural abundance, and low toxicity. However, the process of alloying and dealloying during cell cycling, causes the silicon particles to undergo a dramatic volume change of approximately 280% which leads to electrolyte consumption, pulverization of the electrode, and poor cycling. In this study, the formation of an ex-situ artificial SEI on the silicon nanoparticles with citric acid has been investigated. Citric acid (CA) which was previously used as a binder for silicon electrodes was used to modify the surface of the nanoparticles to generate an artificial SEI, which could inhibit electrolyte decomposition on the surface of the silicon nanoparticles. The results suggest improved capacity retention of ∌60% after 50 cycles for the surface modified silicon electrodes compared to 45% with the surface unmodified electrode. Similar improvements in capacity retention are observed upon citric acid surface modification for silicon graphite composite/ LiCoO2 cells

    Vectors and malaria transmission in deforested, rural communities in north-central Vietnam

    Get PDF
    Background: Malaria is still prevalent in rural communities of central Vietnam even though, due to deforestation, the primary vector Anopheles dirus is uncommon. In these situations little is known about the secondary vectors which are responsible for maintaining transmission. Basic information on the identification of the species in these rural communities is required so that transmission parameters, such as ecology, behaviour and vectorial status can be assigned to the appropriate species

    Reduced basis approximation and a posteriori error estimation for parametrized parabolic PDEs; Application to real-time Bayesian parameter estimation

    Get PDF
    In this paper we consider reduced basis approximation and a posteriori error estimation for linear functional outputs of affinely parametrized linear and non-linear parabolic partial differential equations. The essential ingredients are Galerkin projection onto a low-dimensional space associated with a smooth ``parametric manifold'' --- dimension reduction; efficient and effective Greedy and POD-Greedy sampling methods for identification of optimal and numerically stable approximations --- rapid convergence; rigorous and sharp a posteriori error bounds (and associated stability factors) for the linear-functional outputs of interest --- certainty; and Offline-Online computational decomposition strategies --- minimum marginal cost for high performance in the real-time/embedded (e.g., parameter estimation, control) and many-query (e.g., design optimization, uncertainty quantification, multi- scale) contexts. In this paper we first present reduced basis approximation and a posteriori error estimation for general linear parabolic equations and subsequently for a nonlinear parabolic equation, the incompressible Navier-- Stokes equations. We then present results for the application of our (parabolic) reduced basis methods to Bayesian parameter estimation: detection and characterization of a delamination crack by transient thermal analysis

    Implementation of Web-Based Respondent-Driven Sampling among Men who Have Sex with Men in Vietnam

    Get PDF
    Objective: Lack of representative data about hidden groups, like men who have sex with men (MSM), hinders an evidence-based response to the HIV epidemics. Respondent-driven sampling (RDS) was developed to overcome sampling challenges in studies of populations like MSM for which sampling frames are absent. Internet-based RDS (webRDS) can potentially circumvent limitations of the original RDS method. We aimed to implement and evaluate webRDS among a hidden population. Methods and Design: This cross-sectional study took place 18 February to 12 April, 2011 among MSM in Vietnam. Inclusion criteria were men, aged 18 and above, who had ever had sex with another man and were living in Vietnam. Participants were invited by an MSM friend, logged in, and answered a survey. Participants could recruit up to four MSM friends. We evaluated the system by its success in generating sustained recruitment and the degree to which the sample compositions stabilized with increasing sample size. Results: Twenty starting participants generated 676 participants over 24 recruitment waves. Analyses did not show evidence of bias due to ineligible participation. Estimated mean age was 22 year and 82% came from the two large metropolitan areas. 32 out of 63 provinces were represented. The median number of sexual partners during the last six months was two. The sample composition stabilized well for 16 out of 17 variables. Conclusion: Results indicate that webRDS could be implemented at a low cost among Internet-using MSM in Vietnam. WebRDS may be a promising method for sampling of Internet-using MSM and other hidden groups. Key words: Respondent-driven sampling, Online sampling, Men who have sex with men, Vietnam, Sexual risk behavio
    • 

    corecore