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0.1 Introduction

In this chapter we consider reduced basis approximationagpaisteriorierror estimation for linear functional
outputs of affinely parametrized linear and non-linear parabolic partial differential equations. The essential ingre-
dients are Galerkin projection onto a low-dimensional space associated with a smooth “parametric manifold” —
dimension reduction; efficient and effective Greedy and POD-Greedy sampling methods for identification of opti-
mal and numerically stable approximations — rapid convergence; rigorous andashagperiorierror bounds
(and associated stability factors) for the linear-functional outputs of interest — certainty; and Offline-Online com-
putational decomposition strategies — minimumarginal costfor high performance in the real-time/embedded
(e.g., parameter estimation, control) and many-query (e.g., design optimization, uncertainty quantification Boyaval
et al. (2008), multi-scale Boyaval (2008); Nguyen (2008b)) contexts.

In this paper we first present reduced basis approximatioragrakteriorierror estimation Prud’homme et
al. (2002); Rozza et al. (to appear 2008) for general linear parabolic equations — building on Grepl and Patera
(2005); Haasdonk and Ohlberger (2008) — and subsequently for a nonlinear parabolic equation, the incompress-
ible Navier—Stokes equations — building on Nguyen et al. (2008). We then present results for the application
of our (parabolic) reduced basis methods to Bayesian parameter estimation: detection and characterization of a
delamination crack by transient thermal analysis Grepl (2005); Starnes (2002).
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0.2 Linear Parabolic Equations

0.2.1 Reduced basis approximation

We first introduce several notations required for the remainder of the chapter. Our parameter domain, a closed
subset ofR”, shall be denote®; a typical parameter value — B-tuple in D — shall be denoteg. Our time
domain shall be denoted ly= [0, ¢ ;] with ¢+ the final time. Our physical domain ihspace dimensions shall be
denoted? with boundan®(?; a typical point inQ shall be denoted = (x4, ..., z4). We can then define the func-
tion spaceX = X (Q) such that H}(Q))Y c X c (HY(Q))Y; hereH*(Q) = {v|v € L?(Q), Vv € (L?(2))%},
HYQ) = {v e H(Q)|van = 0}, L*(2) is the space of square integrable functions d¥eand) = 1 (respec-
tively, d) for scalar (respectively, vector) problems. We denote€ by x the inner product associated with the
Hilbert spaceX; this inner product in turn induces a noim ||x = /(-, ) x equivalent to the usudli*(2))Y
norm. Similarly, we denote by, -) and|| - || the L2(Q2) inner product and induced norm, respectively.

Givenp € D, we findu(u) € C°(I; L?(2)) N L?(I; X) such that

m(ue(t; ), v ) + a(u(t; p),vip) = g(t)f(v), YoeX, Viel, 1

subject to initial conditionu(t = 0; 1) = ug € L*(2). We then evaluate our output&; i) = £(u(t; u)),Vt € I.
Noteg(t) € L*(I) is our control function. Our bilinear formsandm are assumed to be continuous ovéand
L?(Q), respectively. We further suppose coercivity: forakt D,

is strictly positive. Finally, we assume that our bilinear forms are “affine in parameter”: for someQiniéad
Q., a andm may be expressed as

a(w, v; ) Z@q Ja(w,v), m(w,v; p) Z@q ,0) (2)

for given parameter-dependent functiéds 1 < ¢ < Qa,@;l,;, 1 < ¢ < @Q,,, and continuous parameter-independent
bilinear formsa?,1 < ¢ < Q,, m4,1 < ¢’ < Q... (The assumption of affine parameter dependence may be
relaxed, see Barrault et al. (2004), however the error estimates — as developed below in the affine case — are
no longer rigorously bounds in all cases.) Finaffyand? are linear continuous functionals ov&rand L?(12),
respectively; we assume — solely for simplicity of exposition — thand/ are independent of.

It is important to note tha® is not a function of the parameter. We implicitly assume thd® is a parameter-
independent reference domain: all geometric parametric dependence is reflected — through the usual transfor-
mation procedures — in the functio®¥ , (1), 1 < ¢ < Qq - We refer to Rozza et al. (to appear 2008) for
automated piecewise-affine mapping proceduess () — Q — here Q°'ie(y) is the “original” parameter-
dependent domain afelis our parameter-independent reference domain — that yield, for rather general geometric
parameter dependence, the requisite affine structure (2).

We next introduce the finite difference in time and finite element (FE) in space discretization of this parabolic
problem Quarteroni and Valli (1997). We first divide the time inter¥ahto K subintervals of equal length
At = t;/K and defing® = kAt, 0 < k < K. We then define the finite element approximation sp&iée C X
of dimension\. Now, givenu € D, we look foru™V * (1) € X,0 < k < K, such that

g () = N ) v ) + aut (), v ) = g(#9) f(v), Yo € X 1<k <K, ©)

subject to initial conditior{u? %, v) = (ug,v), Vv € X. We then evaluate the output: for< k < K,

N () = 0N (). )

We shall sometimes denoté (1) asu™N (t7; 1) ands™ ¥ (1) ass™V (t*; 1) to more clearly identify the discrete
time levels. Equation (3) — Euler-Backward Galerkin discretization of (1) — shall be our point of departure:
we shall presume thaht is sufficiently small andV is sufficiently large such that’V' (¢t*; 1) and s (t*; 1)

are effectively indistinguishable from(t*; ;1) and s(t*; 1), respectively. (The development readily extends to
Crank-Nicolson discretization; for purposes of exposition, we consider the simple Euler Backward approach.)



Finally, we introduce the reduced basis (RB) approximation Almroth et al. (1978); Fink and Rheinboldt (1983);
Noor and Peters (1980); Porsching (1985). Given a set of mut@alyx—orthonormal basis functiong, €
XN, 1 < n < Npax, the RB spaces are given by

Xy = span{&,, 1 <n < N}, 1< N < Npjax- (5)

In actual practice (see Section 0.2.3), the spatgse X* will be generated by a POD-Greedy sampling pro-
cedure which combines spatial snapshots in time and parametel £(,) — in an optimal fashion; for our
present purposes, howevef,y can in fact represent any sequence of (low—dimensional) hierarchical approx-
imation spaces Rozza et al. (to appear 2008). GjvenD, we now look foruk (1) € Xn,0 < k < K, such

that

k() = uy (1), v 1) + alu (), 03 ) = g(t*) f(v), Vo€ Xy, 1<k <K, (6)
subject to(ud, (11),v) = (uV'°,v), Yo € Xy. We then evaluate the associated output0fer k < K,
shr (i) = Luf (). @)

We shall sometimes denote, (1) asuy (t*; ) and sk (1) assy(t*; 1) to more clearly identify the discrete
time levels. (Note that in fact all the RB quantities should beAf a— XA, uN ¥ (), % * (1) — since the RB
approximation is defined in terms of a particular truth discretization; however, for clarity of exposition, we shall
typically suppress the “truth” superscript.)

The goal of the RB approximation is simple: dimension reduction— A" — and associated computational
economies. (Online) RB evaluation is typically several orders of magnitude less expensive than the classical finite
element approach Prud’homme et al. (2002); Rozza et al. (to appear 2008).

0.2.2 A posteriorierror estimation

Crucial to the general area of model reduction is not just the reduced-order approximation but even more impor-
tantly rigorous, sharp, and inexpens&eosteriorierror bounds. To construct tteeposteriorierror bounds for
the RB approximation, we need two ingredients. The first ingredient is the dual norm of the residual

. tk.
EN(tk, ,u) = sup TN(Uv 7:“)

., 1<k<K, (8)
vexy vllx

wherery (v; t*; 1) is the residual associated with the RB approximation (6)

1 _
(vt i) = g () F(0) = mpm(ul (n) = ui (), 0 0) — a(u (), vsp), Vo e XN, 1<k<K
9)
The second ingredient is a lower boumfy; (1) < oV (1), Vi € D, for the stability constant”V (1) defined as

a(v,v; 1)

N
11
W= R

, YueD.

o (p) =

Note that sinceX" X, o™V (1) > a(u) > 0,Vu € D; we further assume that' (1) > 0, Vi € D.

We can now define our error bounds in terms of the dual norm of the residual and the lower bound for the
stability constant. In particular, it can readily be proven Grepl and Patera (2005); Haasdonk and Ohlberger (2008);
Nguyen et al. (2008) that for all € D and allV,

[ F () —ul (Il < AR (), 18V () = sk (] < AR (W), 1<k <K, (10)

whereAk (1) = An(t*; u) and A3k (u) = A%, (tF; 1) are given by

k , k'—1
Framp S (6%(75’“ 1) (1+ Atogi(w)) )

(1 JrAtozﬁg(,u))k (11)

) Ak

AR (1)

A#uo—<sm>“”

vexn [|v]l



(We assume for simplicity thatV'® € X y; otherwise there will be an additional contributionAd, (11)). Note
again that the RB error is measured relative to the finite element “truth.”

It should be clear that our error bound for the output is rather crude. We may pursue primal-dual RB approx-
imations Grepl and Patera (2005); Pierce and Giles (2000); Rozza et al. (to appear 2008) that provide both more
rapid convergence of the output and also more robust (sharper) estimation of the output error. However, in cases
in which manyoutputs are of interest, for example inverse problems, the primal-only approach described above
can be more efficient and also more adaptive — efficiently expanded to include additional outputs.

0.2.3 Offline-Online computational approach
Construction-Evaluation decomposition

The affine representation (2) permits a “Construction-Evaluation” decomposition Balmes (1996); Machiels et
al. (2000); Prud’homme et al. (2002) of computational effort that greatly reduces the marginal cost — rele-
vant in the real-time and many-query contexts — of both the RB output evaluatiorandthe associated
error bound, (11). The expensive Construction stage, performed once, provides the foundation for the subse-
guent very inexpensive Evaluation stage, performed many times for each new gesif@dWe first consider the
Construction-Evaluation decomposition for the output and then address the error bound.

We represent; (1) asuf; (1) = SN, Wk (1)€,, where we recall that the;, 1 < j < N, are the basis
functions for our RB spac& . We may then evaluate the RB output as

SI;V(:U) = ‘C%wN(N)v I1<k<K, (12)

wherely,, = ((€,),1 <n < N.Tofindthewy ;(1),1 < j < N,1 <k < K, weinseruf (1) = fo:lw]’@n(u)gn,

ub () = SN Wk ()€, ando = &, in (6) to obtain the discrete system

(M (1) + AtAy (n))wi () = Atg(t*) Fy + My (pwy ' (1), 1<k <K, (13)
whereAy (1) € RV*N My (u) € RV*N JandFy (1) € RY are given byAy 1.0 = a(&ny Emi 1), MN mn =

m(&n,&mi ), 1 <m,n < N,andFy, = f(&,), 1 <n < N, respectively. We note thad (1) and My ()
can be expressed, thanks to (2), as

Qa Qm
An(p) =Y LAYy, My(p) =Y 0% (WM}, (14)
g=1 q'=1
where theA‘}me = a?(&ny€m), ?an = mq/(gn,gm), 1<m,n<N,1<q¢<Q.1<q¢ <Q,,, are parameter-

independentWe can now readily identify the Construction—Evaluation decomposition.
In the Constructionstage we first form and store the time—independent;ariddependent matrices/vectors

AL Z-j,/\/l‘}v/mx 050 FlNanas i @NALN, i1 <4, § < Nipax, 1 < ¢ < Qa, 1 < ¢’ < Q. The operation count in

the Construction stage of course depends\or— even once the;, 1 < i < Npay, areknown(obtained by the
sampling procedure of the next section), it remains to compyty’2,.) finite element quadratures over the
O(N) triangulation. Note that, thanks to the hierarchical nature of the RB spaces, the stiffness matrices/vectors
A‘}Vij,/\/lj’\/,ij,fm, andLy;,1 <i,7 <N, forany N < N, can be extracted as principal subarrays of the
correspondingVy,.x quantities. (For nonhierarchical RB spaces the storage requirements are much higher.)

In the Evaluationstage, we first form the left—hand side of (13)0{(Q. + Q.,)N?) operations; we then
invert the resultingV x N matrix in O(IN?) operations (in general, we must anticipate that the RB matrices will
be dense); finally, we compuztdfvj, 1<j<N,1<k<K,in O(KN?) operations by matrix-vector multipli-
cation. Once the;j“\,j,l <j < N,1<k<K,are obtained —O((Q, + Q.. + N + K)N?) operations in total
— we evaluate our output from (12) if(/NVK) operations. The storage and operation count in the Evaluation
phase is clearly independent.bf, and we can thus anticipate — presumiligg. N'— very rapid RB response
in the real-time and many—query contexts.

The Construction-Evaluation procedure for the output error bound is a bit more involved. There are three
components to this bound: the dual norm/ofreadily computed, once, in the Construction phase); the lower
bound for the coercivity constaniy g (), which is computed by the Successive Constraint Method (SCM) as
described in Huynh et al. (2007); Rozza et al. (to appear 2008), and Section 0.3.3 of the current paper; and the
dual norm of the residualy (t*; ). We consider here the Construction-Evaluation decomposition for the dual

max



norm of the residual Grepl and Patera (2005). We first invoke duality, our RB expansion, the affine parametric
dependence af andm, and linear superposition to express

N Qa Qm
W) =On 3 | D 040wk n () QN + Z O (1) (W (1) = W (1) QT
n= =1
NN [(Qa,Qa
+ Z Z eq (,Uf)w]k\] n/(/i) %Lnn’qq’
n,n'=1 \q,q'=
(15)
Qm Qm
At (At)?2 Z Z @m m (wéc\/ n (p’) - w?\/'—nl (lu‘))(w]k\/' n/(:u) - wjk\lnl (/u‘)) Wrﬁn’qq’
q=1q'=1
U. Q’Nl
7 D0 D OO (ki (1) Ky (1) — A () Wy |+ 1SS
q lg=1

wherlef = (zf, 2%, Qqu 2(2pg0 7 2Nx,1<¢<Qq,1<n<N, Qqu 2(z,%,zf)x, 1<q<Qm,
1<n<N, Q¥ e :(z;q, ) x, 1<¢,¢ < Q4 1 <nyn’ <N, QNnnqq,_2(szq, g Nx, 1<q¢<
Qas 1<q <Qm, 1<n,n' <N, and QW™ ... = (2, n,q,)X, 1<q¢,¢ <Qm, 1<n,n < N. Here the
e are solutions to time—independent aneindependent “Poisson” problerr(saf v)x = f(v),Vv €

v)x = —m4 (fn,v), Yo e XN,

f
Z7 an!
XN (2 f;q, v)x = —a(&n,v), Yo e XN, 1<n < N,1<q<Q, and(z™
1<n<N,1<q¢ <Qn

The Construction-Evaluation decomposition is now clear. In the construction stage — parameter independent,

and performed only once — we find, 2%, 2™, and the inner produc@f QN QN , 9% a9,

Nmax! max ' max’ Nmax?

andQ4™ at (considerable) computational c63tQ;, Q;, N, N'). We note again that the inner produ@$/,

nq”

max’

max:

ol Q{Vm, ¢, Q%™ and QY™ for any N < Nyax can be extracted as principal subarrays of the correspond-
iNg Nmax quantmes In the Evaluation stage — parameter dependent, and performed many times — we simply
perform the sum (15) from the stored inner product®if{1 + Q,, N + Q,N)?) operations per time step and
henceO((1+ Q.. N + Q.N)2K) operations in total. The crucial point, again, is that the cost and storage in the
Evaluation phase — thmarginal cost for each new value @f— is independent aV: thus we can not only eval-

uate our output prediction but also our rigorous output error bound very rapidly in the parametrically interesting
contexts of real-time or many-query investigation. In short, we inherit the high fidelity and certainty of the FE
approximation but at the low cost of a reduced-order model.

POD-Greedy sampling strategy

Our sampling method (see also Nguyen et al. (2008)) follows the proposal in Haasdonk and Ohlberger (2008):
we combine the POD (Proper Orthogonal Decompositiorif ia— to capture the causality associated with our
evolution equation — with the Greedy procedureuirGrepl and Patera (2005); Rozza et al. (to appear 2008);
Veroy et al. (2003b) — to treat efficiently the higher dimensions and more extensive ranges of parameter variation.
To begin, we summarize the well-known optimality property of the POD as described in Kunisch and Volkwein
(2002). GivenJ elements ofXV, w; € XV, 1 < j < J,POD{wy, ..., ws}, M) returnsM (-, -) x-orthonormal
functions{xm,1 < m < M} such that the spad®,; = span{x,,1 < m < M} is optimal in the sense that

1 1/2
Pas = arg T3 s ol )
=1

inf
Y Cspan{w;, 1<j<J}

whereY), denotes am/-dimensional linear space.



To initiate the POD-Greedy sampling procedure we must specify a very large (exhaustive) “train” sample of
Ntrain POINS IND, Erain, and an initial (say, random) sam#é = {5 }. The algorithm is then given by

Set Z =0, u* = yii;
While N < Npaxo

{xm,1 <m < M1} = POD({u" (t*, ), 1 < k < K}, M) ;
Z —{Z,{xm,1 <m < Myi}};
N — N+ M, ;
{6, 1 <n < N} =POD(Z,N);
Xy =spaén, 1 <n < N}
Pt = argmax,ez,,,., An (" =t5;p)
S* = {8 u*};
end.

Set XN - Spaf{fml S n S N}; 1 S N S Nrnax-
In actual practice, we typically exit the POD-Greedy sampling procedure &t Ny,.x < Npax,0 for which a
prescribed error tolerance is satisfied: to wit, we define

* _ K.
€N ,max — Hax AN (t nu)?

HEEtrain

and terminate wheny, .. < ;. Note, by virtue of the final re—definition, the POD-Greedy generaitesr-
chicalspacesXy, 1 < N < N, Which is computationally very advantageous.

There are two “tuning” variables in the POD-Greedy procedie,and M,. We choosel/; to satisfy an
internal POD error criterion based on the usual sum of eigenvalues;gndve chooseM, < M; to minimize
duplication in the RB space. It is important to note that the POD-Greedy method readily accommodates a repeat
u* in successive Greedy cycles — new information will always be available and old information rejected; in
contrast, a pure Greedy approach in botimd . Grepl and Patera (2005), though often generating good spaces,
can “stall.” Furthermore, since the POD is conducted in only one (time) dimension — with the Greedy addressing
the remaining (parameter) dimensions — the procedure remains computationally feasible even for large parameter
domains and very extensive parameter train samples (and in particular in higher parameter dimensions). We now
discuss the computational aspects in slightly more detail.

The crucial point to note is that the operation count for the POD-Greedy algorithm is additive and not multi-
plicative inn¢..;» and . In particular, in searching for the next parameter valtiewe invoke the Construction—
Evaluation decomposition to inexpensively calculategipesteriorierror bound at the,.;, candidate parameter
values. In contrast, in a pure POD approach, we would need to evaluate the finite element “truth” solution at the
Nerain CaNdidate parameter values. (Of course, much of the computational economies are due not to theeGreedy
se but rather to the accommodation within the Greedy of the inexpensive error bounds.) As a result, in the POD-
Greedy approach we can take.,;, relatively large: we can thus anticipate RB spaces and approximations that
provide rapid convergenagniformly over the entire parameter domain. (More sophisticated and hence efficient
search algorithms can also be exploited in the Greedy context, for example Bui-Thanh et al. (2007).)

We pursue the POD-Greedy sampling procedure — which involves both the Construction and Evaluation
phases — in an Offline stage. Then, in the Online stage, we invoke only the very inexpensive Evaluation phase:
p— sk (), A% (1), 1 < k < K. Thus either in the real-time context or the many—query context — in which the
Offline stage is unimportant and amortized, respectively — the RB approach will be very competitive. Note also
in the POD-Greedy procedure we choosed@) the impulse function; the resulting RB space will thus have good
approximation properties for any(t) — g(t) can be specified in the Online stage.

0.3 Nonlinear Parabolic Equations

0.3.1 Reduced basis approximation

We consider here the extension of the RB methods and associated a posteriori error estimators to quadratically
nonlinear parabolic PDEs — in particular, the incompressible Navier-Stokes equations. (For higher than quadratic



nonlinearities, other approaches must be pursued Barrault et al. (2004EGarad. (2007); Grepl et al. (2007a)

that in turn introduce both numerical and theoretical complications.) Although there are many examples of reduced

order models for the unsteady viscous Burgers equation Kunish and Volkwein (1999) and the unsteady incom-

pressible Navier—Stokes equations Christensen et al. (2000); Deane et al. (1991); Gunzburger et al. (2007); Hinze

and Volkwein (2005); Ito and Ravindran (1998a,b, 2001); Johansson et al. (2006), none is endowed with rigorous

a posteriorierror boundg.For the RB treatment of the viscous Burgers equation we refer to Nguyen et al. (2008).
For simplicity of exposition we consider the velocity formulation with homogeneous Dirichlet (no-slip) or peri-

odic boundary conditions: thus the velocity spatis the space of allivergence-freéunctionsuv in (H'(Q))4=2

that vanish on all walls and are (saf)periodic inz;. We can then state the weak form of the incompressible

Navier-Stokes equations (nondimensionalized with respect togheusscaling): for givern: € D = [tmin, fmax]

(0 < fmin < pmax), the velocityu(t; 1) satisfies

m(ue(t; ), v) + a(u(t; p), v) + c(ult; p), ult; p),v) = pf(v), VoeZ Vtel, (16)

with initial conditionu(t = 0; 1), v = up € Z. We can subsequently evaluate our output of interestiag) =

C(u(t; p)). Our forms are given byn(w, v) = [, wivi, a(w,v) = [, w; ; v j, ande(w, z,v) = 1 [,((wiz;) ; +

zjw;, j)v;, Where we adopt indicial notation; we presume tha a bounded functional ove¥, and/ is a bounded
linear functional over.?(Q2). Herey, our single parameter, denotes the magnitude of the driving force (not the
dynamic viscosity — apologies); we then define our Reynolds number as

Relis) = 7 [ wiltsino. (17)

which is similar to the “usual” channel definitions.
We next define the Euler-Backward discretization in time and the “truth” finite element approximation in
space: Given divergence-free finite element spat¥s- Z, we look fOfuNk(ﬂ) e ZN 0 < k < K, such that

SR () = (), 0) 4 B ), ) + el ), VR0, 0) = pf (), W e 2V, (19)
for 1 < k < K, subject to initial conditior{u? %(1), v) = (uo, v), Vv € ZV. We subsequently evaluate our out-
put of interest as”V * (1) = £(u™ ¥ (1)) for 0 < k < K. We shall build our RB approximation upon the “truth”
discretization (18), and we shall measure the error in our RB prediction relativ& tgp) = vV (t*; 1) and
Nk (u) = sN(t*; 1). For purposes of exposition, we consider the Euler-Backward scheme; the method is readily
extended to the Crank-Nicolson discretization in time (as in our numerical results).
Lastly, we turn to the RB approximation. Our velocity space is giveewRy= span{¢,, € ZV,1 <n < N};

it immediately follows thatZy c Z*, and we may hence pursue Galerkin projection with respect to (18). Given
w € D, we look foruk, (n) € Zn,0 < k < K, such that

L b () — k ()l (1), ) = ez 19

At N\H U (M),U)+CL(UN(M),’U)+C(UN(M),UN(/1,),U)—/.Lf(v), v E LN, ( )
for 1 < k < K, subject to initial condition:%, (1) = vV °. (For simplicity of exposition we assume that © ¢
Zx.) We then evaluate our RB output 8% (1) = ¢(uk; (1)) for 0 < k < K. (Clearly in proceeding with the
divergence-free route we exclude outputs that depend on the pressure, as well as geometric parametrizations for
which the incompressibility constraint is parameter dependent. Future work shall consider non-divergence-free
spaces to address these issues and thus permit a wider class of applications.)

0.3.2 A posteriorierror estimation

It can be shown by extension of the result in Nguyen et al. (2008) thdt4ffe)-norm of the RB erroru’V * (1) —
uk (p)|), can be bounded as

[N () — ul ()] < AR (), 1<k <KVpeD, (20)

where the error bound is defined (fAr sufficiently small Nguyen et al. (2008)) as

At (S?V(t’“'; ) TIE (1 + At kP (8 u)))
[Tooy (1+ At pKB(; )

2Note there are examples of rigorous BBosteriorierror bounds for theteadyviscous Burgers equation in Veroy et al. (2003a) and the
steadyincompressible Navier—Stokes equations in Deparis (2008); Nguyen et al. (2005); Veroy and Patera (2005).

AR (n) = , 1<k<K. (21)




Heree y is the dual norm of the RB residual defined as

(vt p) = pf(v) - Aitm(U’fv(u) —uy (1), 0) = a(uy (u),v) — c(uly (), uf (u),v),  (22)

andp%B(t*; 1) is a lower bound for the stability constant

2c(un (t%; 1), v,v) + a(v,v)
veZN l|lv]|?

(23)

The output error bound can then be computedhg8() = (sup,c zn £(v)/[[v]|) A% (1) for 1 <k < K.

The stability constant (23) is closely related to the absolute (immediate decay) criterion of hydrodynamic
stability theory Joseph (1976). Farsufficiently small (Reynold&e(u) sufficiently small)p (¢; 1) will be uni-
formly positive and hence error growth will be controlled; in this case, we can consider rather large times —
effectively reaching steady or (say) steady-periodic states. Howevey, farge (ReynoldsRe(y) sufficiently
large) pv (t; 1) will certainly be negative and hence the error bound (21) will grow exponentially in time; in this
case, we will be practically limited to modest final times. The theory (e griori or evena posteriorifinite
element error estimates) for the Navier-Stokes equations Constantin and Foias (1988); Johnson et al. (1995) is
plagued by exponential growth factors and large stability factors. There are some cases in which algepraic-in-
bounds can be derived Johnson et al. (1995), however the requisite conditions will not always be satisfied.

The simplest and most common bounds for the exponential growth rate involZ&<tffe)-norm of the gradi-
ent of the velocity (in our case, of the gradient.of (¢; ;1)) which indeed will increase witly'Re or perhaps even
Re. We believe our estimate (21),(23) will improve upon the usual theoretical estimates, not enough to permit
long-time integration at very high Reynolds numbers, but enough to permit practical (and rigorous) error esti-
mation at modest times and modest Reynolds numbers. There are two reasons for our optimism (in addition to
some numerical results reported below): (23) includes a viscous stabilizing term that will somewhat constrain the
minimizer and moderate the minimum — a candidate field large only in a thin destabilizing layer will also incur
significant dissipationp (t; ) of (23) shall be estimated (conservatively but) relatively precisely — our lower
boundp%B (¢; 1) shall reflect the full temporal and spatial structure of the RB velocity field.

0.3.3 Offline-Online computational approach

We briefly describe the Offline-Online procedure for the incompressible Navier-Stokes equations and refer to
Nguyen et al. (2008) for further details in thle= 1 Burgers context. (Of course, the latter is not burdened with
the incompressibility condition.)

Construction-Evaluation decomposition

For the Construction-Evaluation decomposition, the basic strategy remains intact — the dependgeiscafome
— however the procedure requires some modification from the linear case, and there is some degradation in
performance. First, as regardg (¢; 1), the only new complication is the quadratic nonlinearity: the formation
of the RB Jacobian matrix — required for Newton iteration of the implicit temporal discretization of (19) —
now requiresO(N?3) operations rather tha@(NN?); however, the total Evaluation operation count Q¥ (¢; )
andsy (t; u) is relatively unchanged from the linear case. Second, as regards the error bound, (21), in particular
the dual norm of the residual, there are two new complications: first, the presence of the quadratic nonlinearity
increases the Evaluation operation count froifiv?) to O(N*) — certainly significant, but often not dominant
(relative to the Newton iteration); second, the dual norm must be calculated with respect to the divergence-free
space, and hence the Offline calculations — now essentially Stokes solves — are more complicated. However, and
critically, the operation count for the Evaluation stage remains independdft of

We must also provide the lower boupl (t; 1) for p (¢; 1) of (23). To this end, we expregs; (t¥; 1) as

—rz (24)

hereY™ (t*; 1) = wn o (t*; 1), 1 <n < N, YNHL(EF; 1) = 1, andd™ (w, v) = c(&,, w,v) + c(&n, v,w), 1 < n <

N, dV*t(w,v) = a(w,v). We can thus apply the Successive Constraint Method (SCM) Huynh et al. (2007);
Rozza et al. (to appear 2008) to implement the Construction-Evaluation decomposition for the lower bound
p%B(t; ). The SCM is a general Offline-Online procedure for the calculation d§arous lower bound for
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Figure 1 The geometry (a) and mesh (b) for the square-in-channel configuration.

the minimum Rayleigh quotient of parametrically affine operators such as (24). (There are of course many simple
techniques for either rigorous upper bounds or non-rigorous lower bounds for minimum eigenvalues or singular
values; rigorous lower bounds are much more difficult to develop.)

In the SCM method the minimization (24) is recast as a Linear Progam: the linear objective is the Rayleigh
quotient of (24) but now expressed in new variabjés= d"(v,v)/||v[|?, 1 <n < N + 1; the linear inequality
constraints reflect continuity information on the individual bilinear forms and stability information (kpgwat
optimally selected time and parameter values. The bound must be “useful,” however high accuracy is not required;
typically, an error of 50% irxp(pn (t; 1)t ;) — ultimately a 2x degradation of our error bounds — is acceptable.

The Construction stage, performed once, entails several (often many) eigenprobledd’ aaecostO (N ). (In
practice, the Offline SCM effort is often onerous; incompressible Navier-Stokes is particularly unpleasant since
the div-free property o must be imposed through a Lagrange multiplier — yieldirstekesigenproblem.)

The Evaluation/Online phase, performed for each desited, is a small Linear Program of sizedependent of

N. The SCM contribution to the Online cost is quite small and often negligible.

POD-Greedy sampling strategy

The sampling procedure for Navier-Stokes is very similar to the POD-Greedy sampling procedure for linear
parabolic equations described in Section 0.2.3. However, nonlinearity introduces several complications. First, we
must calculate aominalstability constanp?; to serve (in lieu ofp%?) in the POD-Greedy sampling procedure;

then, once the sampling procedure is completed — and hence the RB approximation available — we (re)calculate
thetrue stability constant. In the event that we find our nominal stability constant is not sufficiently conservative
we can return to the sampling procedure to further refine the RB space. (Of course, in any case, in the Online
stage — for any givem of interest — we always calculate our rigorcuposteriorierror bound (21) to confirm
sufficient accuracy.) Second, since our problem is no longer Linear (—Time Invariant) we can no longer exploit the
Impulse function as general “trainer”: we must directly consider the (perhaps parametrized) control of interest.

0.3.4 Numerical results

We investigate two-dimensional incompressible flow in the square-in-channel configuration shown in Figure 1.
The flow is assumed (= 6)—periodic inz;. The channel domain (in our nondimensionalization) is thus of length

L = 6 and heightd = 2; the square obstacle, the bottom of which is located a distane®.4 above the bottom

of the channel, is of side length= 0.4. The flow is driven by a pressure—gradient in the-direction:p f(v) =

1t [, v1. For our initial condition we choose the steady—state (stable) solution 0600, v °(u) = uV (t —

oo; 1 = 600); we integrate to a final timg; = 0.5. Our parameter domain is given BY= [min = 100, ftmax =

1000]; note thatRe(fimin) = 40 andRe(pmax) = 234.

As might be expected from earlier investigations Karniadakis et al. (1988) in similar “eddy—promoter” geome-
tries, the flow undergoes a supercritical Hopf bifurcation to a steady—periodic solutioa at..; for our particular
geometry00 < per < 700. Our choiceD = [pimin = 100, umax = 1000] hence captures the interesting dynam-
ics. In particular, given any € D, we simulate a “transition” or “response to disturbance”: we expect oscillatory
re-equilibration foru < ue, and oscillatory growth (and ultimately nonlinear saturation)ag p.,. Our final
timet; = 0.5 is sufficiently large to clearly observe decay/growth — and in fact to almost reach a steady—state
or steady—periodic solution even for= 1000. Note thatt; = 0.5 in our viscous scaling actually corresponds to
many convective timescales.

For the truth temporal discretization we take a Crank—Nicolson scheme with constant tichéste)01 (in
fact a relatively large Courant number) correspondindste= 500 time levels. (We note that Euler Backward
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can only capture the correct bifurcation structure for very small(< .001) for which both the Offline and
Online computational effort is prohibitively large.) We show in Figure 1(b) the “truth” FE triangulation; for the
truth spatial discretization we take a classiBal— P, (quadratic/linear) Taylor—Hood discretization Gunzburger
(1989) with a total ofA/ = 7, 361 velocity and pressure degrees—of—freedom. Comparison of our truth solution
with highly accurate spectral element calculations (Paul Fischer, private communication) confirms the validity of
our “truth” results.

We next choose a log uniformly distributed sample,;, C D of sizeny,.i;, = 46 and pursue the POD-Greedy
sampling procedure witpy, = 0, g = 1000, ande;,; = 10~*. The POD-Greedy sampling process terminates
after 9 POD—greedy iterations — one iteration is defined as one pass througthithdoop — and yields
Nmax = 78 and the optimal parameter sampié = [1000, 100, 996, 307,991, 565, 948, 823, 915]. We observe,
not surprisingly, that most of the POD-Greedy sample points are clogg.to= 1000, however loweru are
also representetiWe present in Figure 2\ max as a function of POD-Greedy iteration number (as welNgs
Clearly, the error indicatory, ... decreases very rapidly witN'; we shall subsequently confirm that the rigorous
error bound, and hence also the true error, also decreases very rapidly with

We now turn to the stability factor. We perform the SCM procedure to construct the lower bound for the
stability factor. We present in Figure 3 the stability fagtar(t*; 1) as a function of” for ; = 400 andy = 1000
for N = 78; we also present the stability factor lower boysief (¢*; 1) as well as a corresponding upper bound
pNB(t*: 1) (also provided by the SCM). As already indicated; (t*; 1) reflects viscous stabilization effects
as well as the detailed spatial and temporal structure of the RB velocity field: Fo400 (Re = 110) — a
weakly nonlinear flow —px (*; 1) increases with time* and becomes positive (stable); for= 1000 (Re =
234), a highly nonlinear flowpy (t*; 1) decreases with tim& and is negative (unstable) — but not too negative
as measured in convective timescales. It should also be noted that the SCM method yields a very good (and
significantly less complicated and less costly than a standard RB Rayleigh—Ritz approximation) upper bound
for the stability factor: the difference betweeR® (t*; 1) and py (t*; 1) is indeed very small. (If we replace
pRXB(tF; 1) with pYB(#*; 11) we will obtain better error bounds — but we can no longer provide guarantees.)

We present the vertical velocity at the spatial p@h.24) as a function of time* for both the “truth” FE and
the RB approximation for = 400 (Re = 110) in Figure 4(a) angk = 1000 (Re = 234) in Figure 4(b). Despite
the complex behavior of the flow and the relatively wide range of the effective Reynolds number, the RB approx-
imation accurately captures the dynamics of the truth FE solution — re-equilibration belcand oscillatory
growth aboveu., — with only relatively few (V = 50) basis functions. We can attribute this rapid convergence
to the Galerkin projection and the effectiveness of the POD-Greedy sampling procedure; the latter can be viewed
as a systematic extension of earlier POD model reduction approaches Deane et al. (1991) applied, in fact, to
“geometrically perturbed” channel flows very similar to our current square—in—channel configuration. Moreover,

3We choose tmot make a second appeal to the POD-Greedy procedure once we pREitF; 1), 1 < k < K. In fact, sincepn (-; p)
decreases withu, the “min-max” POD-Greedy procedure based on titue p}VB(t’“; n),1 <k < K, would further bias the sampl&*
towardsy = 1000.
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calculation of the RB outputX; (1), 1 < k < K, in the Online stage is 2,400faster than direct evaluation of the

FE outputs’*(11),1 < k < K. (Itis possible that with more efficient FE Navier-Stokes solvers the savings would

be reduced fron®(1000) to O(100) — but still quite significant.)
Finally, and perhaps most importantly, we present in Figure 5 the true rel2ti¥®) FE-RB error][uN ¥ (1) —

uk (w)]|/ || * (1)), and the relativel?(Q2) FE-RB error boundA v (t*; 1) /||u™N * (1), as a function of discrete

timet* for N = 30, 45, 60. We consider the particular cage= 1000 (Re = 234): similar results are obtained for

all € [100,1000]; in fact, and in particular given our single appeal to the POD-Greedy procedure, the errors —

true anda posterioribound — ardargestfor ¢ = 1000. We observe that both the true error and ahgosteriori

error bound do in fact converge quite rapidly with We also observe that both the true error ancitipesteriori

error bound do indeed grow exponentially in time, as might be expected for a supercritical linear instability. (Of

course, whereas the true error will saturate, the error boundchetibaturate, and hence in the unsteady context

we must in practice limit the final time;; we discuss this further below.) Finally, the effectivity — the ratio of the

error bound to the true error — is not too large.

It is crucial to note from Figure 5 that, even for our moderate final time and “large” Reynolds nuRwber (
234), the error bound is still quite meaningful. In particular, from Online evaluatiof p£60(¢s; 1 = 1000) we
can guarantee that th&/(= 60) FE-RB error in the relativé?($2) nornt is no greater than 2.6% for alie [0, ¢;].
Furthermore, the RB Online calculation is very inexpensifgf;.) andA% (1), 1 < k < K, as well as the output

40f course in practice to compute Online the relath&(€2) norm error bound we conservatively replace the denomiraidf *(1.)||
with the very inexpensive surrogafte, (1)|| — A%, (w).

1"
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Figure 5 The true relative?(Q) error, ||uN * (1) — u% (w)]| /||’ *(1)|| (solid line), and the relativé?(Q) error
bound,A%; (1) /[|[u™N ¥ (11)|| (dashed line), fop: = 1000 as a function of discrete timé for N = 30,45, and60.

of interests%, (1) (e.g., flowrate) and associatacposteriorioutput error bound\3* (1) = ||€]| 120y Ak (1), 1 <
k < K, can be computed very rapidly — roughly 52 seconds on a Pentium IV 1.73 GHz processor compared to
over 4 hours for direct FE evaluation ot * (1), sV ¥(p),1 < k < K.

Much additional effort is required to consider more extensive (geometry and force) parametrizations, more
complicated boundary conditions, and more general (velocity and pressure) outputs. And we will never be able
to consider very large times for very high Reynolds numbers although more advanced techniques, such as adjoint
methods Johnson et al. (1995); Pierce and Giles (2000) should extend our reach. Nevertheless, our example
illustrates that we can indeed consider modest final times and modest Reynolds numbers with significant nonlinear
effects. There are many interesting applications in this “attainable” region of Reynolds number-final time space.

0.4 Bayesian Parameter Estimation

0.4.1 Bayesian approach

In parameter estimation problems we would like to infer the unknown parameterD C R” from the mea-
surements of outputs of interest?) (t; 11*),1 < m < M, collected fort = ™ = ijpAt €0,ts],1 <j<J;
here M is the number of outputs andlis the number of measurements per output. (In actual practice, some of
the P parameters — for example, measurement system design variables — may be specified (or optimized) rather
than inferred.) In our case the outputs are expressed as functionals of the solution of the forward problem (1) —
s (45 ) = 00 (u(t; w*)) for 1 < m < M. In order to assess our approach to parameter estimation we create
“synthetic” data as

GoP (15 eexp) = s N u) 4P, 1<m<M1<j<, (25)

where thes(™ N (¢55™": %) are the “truth” FE approximation to the exact outp{it”) (t*5"; *) and thee|,”

represent the “experimental” error. We assumeeﬂj? to be independent identically distributed (i.i.d.) Gaussian
random variables (hence white in time) with zero mean and known variqﬁ’ggge

We apply the Bayesian approach to parameter estimation Mosegaard and Tarantola (2002); Wang and Zabaras
(2005a) to the FE “truth” discretization of the forward problem (1). The expected Vati¢.*|GP] of the
unknown parametege* conditional on the dat&“*? is given by

o V(GO )T (1)

EV [t |Go*P) = : 26
) TN (G L ) )
Here the likelihood functiofilV (G**?| ) is given by
MJ/2 exp _ N T(rexp _ N
HN(GeXpM:( L ) ox (_(G FN (1) T(G? — F (u)))7 2
2o, 202

SFor brevity we consider only the expectation; our methodology also applies to the variance and indeed the full empirical posterior distri-
bution function.
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where, forl <m < M and1<j < J, FA,:peD— sMN (557" 1) denotes the FE evaluation of the'™

output at timet®s  at any givery in our parameter domai®. The prior distribution on the parameterIly(u),
is also assumed Gaussfan

Ho(u)( 1 >P/Zexp<(#M0)T(MMO))7 (28)

2 2
2rog 20

where uo € D is the prior mean and? is the associated variance (more generally a covariance). Note that
EN[u*|G=P] in (26) is an expectation with respect to the “random” parametdor any given measurement,
G, EN[1*|GP] is our estimator fop*; properly speakingg?V [1*|G*<P] is a realization of a random variable

— a function of G**P. (To avoid cumbersome notatio¥y*P refers both to the measurement random variable and
to associated realizations.)

The expected value in (26) necessitates the computation of multidimensional integrals, which in turn require
numerous evaluations of the FE outputs; as a consequence, the parameter estimation procedure can be very
expensive. To reduce the computational cost of Bayesian inverse analysis Wang and Zabaras (2005b) introduce
POD-based model reduction. Our emphasis heagissteriorierror estimation (absent in earlier Bayesian model
reduction approaches): our error bounds ensure that our Bayesian inferend¢sentdiébly accurate (relative
to the FE truth), andii() as efficient as possible — through optimal choicé\ofor a given error tolerance. In the
subsequent subsection, we incorporateaposteriorierror bounds into the Bayesian approach to permit rapid
and reliable parameter estimation. (See also Grepl (2005); Grepl et al. (2007b); Nguyen (2008a) for an alternative
approach to RB inverse analysis which more explicitly characterizes parameter uncertainty.)

0.4.2 A posterioribounds for the expected value

We develop hergexpensive, rigorouswer and upper bounds for the expected value (26) based on the RB outputs
and associated error bounds. Toward this end, we first introflwce; (1) = 553’” (55" 1) and AFy (1) =
AT ) for 1 <m < M and1 < j < J, and thenFif (1) = Fiy (i) = AFy (). Heres{™ (t*; 1) and
Afv(m)(tk; u) are the RB prediction and associated error bound fortHeoutput. We then define, far < m <
Mandl < j < J, By m;(p) = max{|G7 — Fy,; ()], IG5} — Fi (1)1}, and
0, if G e [Fy (1), Far o (w)],
Anms(p) = { min{| G2 — Fy ()], 1G22 — Fit ()]}, otherévise[ Romg ) Fms 1) (29)

mj

Note thatGeP € RM/ FE(u) € RM7 Ay () € RMY, andBy (p) € RMY.
We now introduce two new likelihood functions

H%(Gexpu):( 1 )Mmexp (_A%(M)AN(M)>’

27r0§xp 2a§xp (30)
1\t BY (1) Bx (1)
b exp _ _~“N N\H
(k) (msxp) o 2072, )
from which we may evaluate
18, (Ge*P | )T d I14. (G| )T d
EI](]B[M*|G6XP] = fD Ma N( |/M) O(l/’(‘) ’U/” E[]{]B[/J/*|G6Xp] — f'D 'U’b N( |M> U(M) H ) (31)
S T (G| )T (1) dps S T (G| ! )T (/) dpt!

(If 1 takes on negative values then (31) must be modified slightly.) We shalt fake* |G=P] = £ (EXB[u*|GP] +
EVE[u*|G**P]) as our RB approximation 6" [/ |Ge*P].
It can be shown that the expected values defined in (31) satisfy

EINB [ﬂ*|Gexp] < EN[M*|Gexp] < E[I{[B [M*|Gexp]7 (32)

and henceEV [11*|GP] — ERY [u*|GP]| < AEN[1*|GSP] = J(ERP[u*|GP] — EXP[u*|GP]). The proof
is simple: we first note that, singg™~ (£ 1) — 50 (1557 )| < A (1557 ),

Fy(p) < FN(p) < Fi(p), VYpeD; (33)

61n theory, we must multiply (28) by a pre-factor reflecting the bouriedh practice, we shall consider smal) and largeuq such that
L outsideD are highly improbable — and hengis effectivelyR” .
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it thus follows that
An ()" An (p) < (G — FN (u)"(G™ — FN (1)) < B ()" By (), (34)

and hence
% (G |p) < IV (GP|p) < IR (G™P|p). (35)

The bound result (32) is a direct consequence of the definitions (31) and inequality (35), and the non-negativity of
11, 11°, 11y, and (here), € D.

In actual practice the integrations of (31) are replaced with a numerical quadrature; in fact, our FE-RB bounds
are still rigorous for any quadrature scheme (e.g., Gauss or Monte Carlo) with positive weights. In this paper we
consider an adaptive piecewise Gauss—Legendre technique: we first create a domain decomposition selectively
refined near an approximate ; we then apply standard tensor—product Gauss—Legendre quadrature within each
subdomain. We denote by,,,q the total number of integrand evaluations required. (Note for givé# the RB
outputs and associated error bounds are computed (only once) and stored on the quadrature grid; we can then
evaluate the several requisite integrals without further appeal to the RB approximation.) For problems with more
parameters, Monte Carlo techniques would be necessary.

In the Offline stage the RB is constructed: the POD-Greedy sampling procedure is invoked and all necessary
Online quantities are computed and stored. Then, in the Online stage (which involves only the Evaluation phase),
for each new identification*) — and hence for each ne@f*? provided — we evaluate in “real-time” the expec-
tation lower and upper bounds (31). It is clear that the RB approach will be much faster than direct FE evaluation
(of the requisite integrals) even for a single identification, and even more efficient for multiple identifications: in
the limit thatn..q and/or the number of identifications tends to infinity, the RB Offline effort is negligible — only
the very fast (/—independent) RB Online evaluations are relevant. Equivalently, if our emphasis is on real-time
identification, again only the very fast RB Online evaluations are important.

0.4.3 Numerical example

We consider the application of transient thermal analysis to detection of flaws/defects in a Fiber-Reinforced Poly-
mer (FRP) composite bonded to a concrete (C) slab Grepl (2005); Starnes (2002). Since debonds or delaminations
at the composite-concrete interface often occur (even at installation), effective and real-time quality control —
providing reliable information about the thickness and fiber content of the composite, and the location and size of
defects — is vital to safety.

We show the FRP-concrete system in Figure 6. The FRP layer is of thickrggsand (truncated) lateral
extentl0hpgrp; the concrete layer is of (truncated) depth and lateral eXdtertr and10hpgrp, respectively. We
presume that a delamination crackwfknownlengthwge centered at:;; = 0 is present at the FRP—concrete
interface. The FRP thermal conductivity, specific heat, and density are givencbgind p with subscripts FRP
and C, respectively. We shall assume that the FRP and concrete share tHeeamealues for both the density
and specific heat. We assume that the FRP (respectively, concrete) conductimitp@vn(respectivelyknowr);
we denote theunknown conductivity ratio as: = krrp/kc. (In practice, the FRP conductivity depends on fiber
orientation and content — and hence somewhat unpredictable.)

We nondimensionalize all lengths Byrp/2 and all times byhZgppcce/ke. The nondimensional tem-
peratureu is given by (T — To)/(Trrp,max — 10), WhereT is the dimensional temperaturg, is the initial
temperature (uniform in both the FRP and concrete), BAgb max iS the maximum allowable FRP tempera-
ture. The nondimensional flux — imposed at the FRP exposed surface, as shown in Figugétp is-given
by ¢(t)hrrp/(2kc(Trrp max — T0)), Whereg(t) is the dimensional flux. We presume that the nondimensional
surface heat fluy(t) — the stimulus — is unity fof < ¢ < 5 and zero for alt > 5.

Upon application of our mapping procedures (to a reference domain with crack lengts 3) Rozza et al.

(to appear 2008) we arrive at the problem statement (1) with affine expansions @) fer15, Q,, = 2. (In fact,

due to symmetry, we consider only half the domain>> 0.) Our initial condition isu = 0; we integrate to a final
timet; = 10.0. Our P = 2 (both “unknown”) parameters afe= (u1, 12) = (wqel/2, k) assumed to reside in the
parameter domai® = [1, 5]x]0.5, 2[. Finally, we introduce our truth discretization: we consider Euler backward
discretization in time wittA¢ = 0.05 and hencdd = 200 time levelst* = kAt,0 < k < K; we consider a linear
FE truth approximation spacé€” of dimension\/ = 3581. (The FE triangulation provides high resolution in the
vicinity of the surface and near the crack tip, the two regions which suffer sharp spatial gradients.)

Finally, we consideM = 2 outputs: as shown in Figure 6, each output functional corresponds to the average
of the (temperature) field over a “small” square of side—length 1 (flush with the exposed FRP surface); the square
for the first output is centered at (measurement site; 13 0, while the square for the second output is centered

14
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Figure 6 Delamination of a FRP layer bonded to a concrete slab.

Table 1 Lower bound, upper bound, and bound gap for the expected
value of the delamination half-width,; and conductivity ratiq:; as a
function of N. The true parameter valuejig = 2.8 andus = 0.9.

Delamination half-width Conductivity ratio
N ERPlui] ERPlei]  AEn[pi]  EXP3]  ERPlp3]  AEN[w3)
10 1.8199 4.5112 2.6912 0.5748  1.4251 0.8503
20 2.6646  3.0698 0.4052 0.8415  0.9695 0.1280

30 2.8302  2.8890 0.0588 0.8948 0.9134 0.0186
40 2.8495  2.8702 0.0207 0.9010 0.9076 0.0066

at (measurement site 2) = 6.5. Note that we must consider a small area average (rather than pointwise mea-
surement) to ensure that our output functionals remain bounded.éy@) (indeed, even ovell ! (Q2); the L?(Q2)
norm of these “area averaging” functionals increases as the inverse of the square root of the area.

We first briefly discuss the RB approximation and error bounds, and then turn to the inverse problem. This PDE
is not too difficult: we need an RB space of dimension aNly= 40 to ensure — based Qﬁ‘j\,(m (tk, ), m =
1,2 — a “certified” accuracy of roughly 1% in both outpdtszor N = 40 the Online RB calculation: —
s%")(tk;u), Afv(m)(t’“;ﬂ), 0 < k < K, is effected in 0.16 seconds; in constrast, direct FE evaluation requires 22
seconds. All computations in this section are carried out on a 1.73 GHz Pentium IV processor with 1GB memory.

We now turn to parameter estimation. We focus on the sensitivity of the parameter estimation procedure to the
RB dimensionN as (inexpensive but rigorously) quantified by our expectation error bounds. In this experiment,
we sety* = (uf, p3) = (wji, £*) = (2.8,0.9) ando?,, = 0.0025; we choose for the prior mean and variance
wo = (3.3,1.2) and o = 0.04, respectively. The synthetic experimental data (25) is generated by adding i.i.d.
Gaussian random variables to auf = 2 outputs evaluated at = 20 time levelst®s ™, kzj."p =10j,1 <5< J.
We then apply our adaptive piecewise Gauss-Legendre quadrature algorithm wiih= 10,000 points. We
present in Table 1 the lower bouriel?[,.%], upper boundERP (5], and bound gap\E y [115],p = 1,2, for the
expected value of the unknown parametérwe consider a single realizati@r™P.

We observe that the bound gap& v 1] = ER®[u] — ERP[u,], p = 1,2, decrease rapidly: a¥ increases,

Afv(m)(t’“; 1) — 0 and henced (1) — By (u) rapidly. The parameter estimator is quite accurate: the expecta-
tion bounds are within the white noise.(%) of the true parameter valye® = (2.8,0.9), biased toward., as
expected. The RB Online computation (faf = 40) of the lower and upper bounds for the expected value is
completed in approximately 27 minutes — arguably “real-time” for this particular application — as opposed to 61
hours for direct FE evaluation. The RB Offline time is roughly only 2.4 hours, and hence even for one identifica-
tion the RB approach “pays off”; for several identifications, the RB Offline effort will be negligible. (If real-time
response “in the field” is imperative, then even for one identification the RB Offline effort is not important.) In
short, we are guaranteed the fidelity of the truth FE approximation but at the cost of a low order model.

“In fact, the effectivity — the ratio of the output error bound to the true output error — is rather a(3gep), and hence thactual
accuracy fotNV = 40 is closer tol0—%. However, since in the Online stage our inferences are based on the (inexpensive) error bound, we must
construct an RB approximation for which theor boundis sufficiently accurate.
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