8 research outputs found

    Integrated global assessment of the natural forest carbon potential

    Get PDF
    Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system1. Remote-sensing estimates to quantify carbon losses from global forests2,3,4,5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced6 and satellite-derived approaches2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151–363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets

    Co-limitation towards lower latitudes shapes global forest diversity gradients

    Get PDF
    The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.025° × 0.025°) map of local tree species richness using a global forest inventory database with individual tree information and local biophysical characteristics from ~1.3 million sample plots. We then quantify drivers of local tree species richness patterns across latitudes. Generally, annual mean temperature was a dominant predictor of tree species richness, which is most consistent with the metabolic theory of biodiversity (MTB). However, MTB underestimated LDG in the tropics, where high species richness was also moderated by topographic, soil and anthropogenic factors operating at local scales. Given that local landscape variables operate synergistically with bioclimatic factors in shaping the global LDG pattern, we suggest that MTB be extended to account for co-limitation by subordinate drivers

    Estimates and forecasts of forest biomass and carbon sequestration in North America and Australia: a forty-five year quest

    No full text
    A half-century of forest inventory research involving statistically-valid fieldmeasurements (using statistically representative sample size and showing confidence limits) and well-validated forecasting methods are reviewed in this paper. Some current procedures overestimate global and large-scale forest biomass, carbonstorage, and carbon sequestering rates because they are based on statistically-invalid methods (errors in estimates are unavailable and unreported), or they fail to consider key dynamic characteristics of forests. It is sometimes assumed that old-growth forests can serve as fixed, steady-state storage of biomass and carbon for indefinitely long periods, but it is shown by both modelling and remote sensing that forests are dynamic systems, the state of which can change considerably over as shorta time as a decade. Forecasting methods show that maximum biomass and carbon storage in some important forest types occurs in mid-succession, not in old-growth. It is proposed, therefore, that realistic biomass and carbon storage estimates used for carbon credits and offsets be determined as the statistical mean minus the confidence interval and that practical carbon sequestering programs include specific timeframes, not indefinitely long periods of time

    Feeding value of Acacia tortilis pods in goats

    No full text
    Fresh Acacia tortilis pods were mixed with low quality native grass hay to form 5 rations - T 1 (100% hay), T 2 (25% pods + 75% hay), T 3 (50% hay + 50% pods), T 4 (75% pods + 25% hay) and T 3 (100% pods). Male goat groups (3 in each group) were fed these rations. Performance of goats improved with increase in pods inclusion up to 75%. T 1 animals lost weight and showed high morbidity. Acacia pods inclusion up to 75% in diets improved nutrition value of range livestock diets

    The ASOS Surgical Risk Calculator: development and validation of a tool for identifying African surgical patients at risk of severe postoperative complications

    No full text
    Background: The African Surgical Outcomes Study (ASOS) showed that surgical patients in Africa have a mortality twice the global average. Existing risk assessment tools are not valid for use in this population because the pattern of risk for poor outcomes differs from high-income countries. The objective of this study was to derive and validate a simple, preoperative risk stratification tool to identify African surgical patients at risk for in-hospital postoperative mortality and severe complications. Methods: ASOS was a 7-day prospective cohort study of adult patients undergoing surgery in Africa. The ASOS Surgical Risk Calculator was constructed with a multivariable logistic regression model for the outcome of in-hospital mortality and severe postoperative complications. The following preoperative risk factors were entered into the model; age, sex, smoking status, ASA physical status, preoperative chronic comorbid conditions, indication for surgery, urgency, severity, and type of surgery. Results: The model was derived from 8799 patients from 168 African hospitals. The composite outcome of severe postoperative complications and death occurred in 423/8799 (4.8%) patients. The ASOS Surgical Risk Calculator includes the following risk factors: age, ASA physical status, indication for surgery, urgency, severity, and type of surgery. The model showed good discrimination with an area under the receiver operating characteristic curve of 0.805 and good calibration with c-statistic corrected for optimism of 0.784. Conclusions: This simple preoperative risk calculator could be used to identify high-risk surgical patients in African hospitals and facilitate increased postoperative surveillance. © 2018 British Journal of Anaesthesia. Published by Elsevier Ltd. All rights reserved.Medical Research Council of South Africa gran
    corecore