16 research outputs found

    A cost-effectiveness analysis of provider interventions to improve health worker practice in providing treatment for uncomplicated malaria in Cameroon: a study protocol for a randomized controlled trial

    Get PDF
    BACKGROUND: Governments and donors all over Africa are searching for sustainable, affordable and cost-effective ways to improve the quality of malaria case management. Widespread deficiencies have been reported in the prescribing and counselling practices of health care providers treating febrile patients in both public and private health facilities. Cameroon is no exception with low levels of adherence to national guidelines, the frequent selection of non-recommended antimalarials and the use of incorrect dosages. This study evaluates the effectiveness and cost-effectiveness of introducing two different provider training packages, alongside rapid diagnostic tests (RDTs), designed to equip providers with the knowledge and practical skills needed to effectively diagnose and treat febrile patients. The overall aim is to target antimalarial treatment better and to facilitate optimal use of malaria treatment guidelines. METHODS/DESIGN: A 3-arm stratified, cluster randomized trial will be conducted to assess whether introducing RDTs with provider training (basic or enhanced) is more cost-effective than current practice without RDTs, and whether there is a difference in the cost effectiveness of the provider training interventions. The primary outcome is the proportion of patients attending facilities that report a fever or suspected malaria and receive treatment according to malaria guidelines. This will be measured by surveying patients (or caregivers) as they exit public and mission health facilities. Cost-effectiveness will be presented in terms of the primary outcome and a range of secondary outcomes, including changes in provider knowledge. Costs will be estimated from a societal and provider perspective using standard economic evaluation methodologies. TRIAL REGISTRATION: ClinicalTrials.gov: NCT00981877

    Lobular Distribution and Variability in Hepatic ATP Binding Cassette Protein B1 (ABCB1, P-gp): Ontogenetic Differences and Potential for Toxicity

    No full text
    The ATP Binding Cassette B1 (ABCB1) transporter has critical roles in endo- and xenobiotic efficacy and toxicity. To understand population variability in hepatic transport we determined ABCB1 mRNA and protein levels in total liver lysates sampled from 8 pre-defined sites (n = 24, 18–69 years), and in S9 from randomly acquired samples (n = 87, 7 days–87 years). ABCB1 levels did not differ significantly throughout individual livers and showed 4.4-fold protein variation between subjects. Neither mRNA nor protein levels varied with sex, ethnicity, obesity or triglycerides in lysates or S9 (that showed the same relationships), but protein levels were lower in pediatric S9 (p < 0.0001), with 76% of adult ABCB1 present at birth and predicted to mature in 5 years. Pediatric total liver lysates were not available. In summary, opportunistic collection for studying human hepatic ABCB1 is acceptable. Additionally, ABCB1 may be lower in children, indicating differential potential for toxicity and response to therapy in this special population.Pharmaceutical Sciences, Faculty ofNon UBCReviewedFacult

    Hepatitis E virus infections among patients with acute febrile jaundice in two regions of Cameroon: First molecular characterization of hepatitis E virus genotype 4.

    No full text
    BackgroundFebrile jaundice is a common indicator of certain infectious diseases, including hepatitis E. In Cameroon, the yellow fever virus is the only pathogen that is monitored in patients who present with this symptom. However, more than 90% of the samples received as part of this surveillance are negative for yellow fever. This study aimed to describe the prevalence and hepatitis E virus (HEV) genotype among yellow fever-negative patients in the Far North and West regions of Cameroon.MethodsIn a cross-sectional study, yellow fever surveillance-negative samples collected between January 2021 and January 2023 were retrospectively analyzed. Anti-HEV IgM and IgG antibodies were tested using commercially available ELISA kits. Anti-HEV IgM and/or IgG positive samples were tested for HEV RNA by real-time RT-PCR, followed by nested RT-PCR, sequencing and phylogenetic analysis.ResultsOverall, 121 of the 543 samples (22.3%, 95% CI: 19.0% - 26.0%) were positive for at least one anti-HEV marker. Amongst these, 8.1% (44/543) were positive for anti-HEV IgM, 5.9% (32/543) for anti-HEV IgG, and 8.3% (45/544) for both markers. A total of 15.2% (12/79) samples were positive for HEV RNA real-time RT-PCR and 8 samples were positive for HEV RNA by nested RT-PCR. Phylogenetic analysis showed that the retrieved sequences clustered within HEV genotypes/subtypes 1/1e, 3/3f and 4/4b.ConclusionOur results showed that HEV is one of the causes of acute febrile jaundice in patients enrolled in the yellow fever surveillance program in two regions of Cameroon. We described the circulation of three HEV genotypes, including two zoonotic genotypes. Further studies will be important to elucidate the transmission routes of these zoonotic HEV genotypes to humans in Cameroon

    Diagnostic accuracy and usefulness of the Genotype MTBDRplus assay in diagnosing multidrug-resistant tuberculosis in Cameroon: a cross-sectional study

    No full text
    Abstract Background Drug-resistant tuberculosis, especially multidrug-resistant tuberculosis (MDR-TB), is a major public health problem. Effective management of MDR-TB relies on accurate and rapid diagnosis. In this study, we assessed the diagnostic accuracy of the Genotype MTBDRplus assay in diagnosing MDR-TB in Cameroon, and then discuss on its utility within the diagnostic algorithm for MDR-TB. Methods In this cross-sectional study, 225 isolates of Mycobacterium tuberculosis cultured from sputum samples collected from new and previously treated pulmonary tuberculosis patients in Cameroon were used to determine the accuracy of the Genotype MTBDRplus assay. We compared the results of the Genotype MTBDRplus assay with those from the automated liquid culture BACTEC MGIT 960 SIRE system for sensitivity, specificity, and degree of agreement. The pattern of mutations associated with resistance to RIF and INH were also analyzed. Results The Genotype MTBDRplus assay correctly identified Rifampicin (RIF) resistance in 48/49 isolates (sensitivity, 98% [CI, 89%–100%]), Isoniazid (INH) resistance in 55/60 isolates (sensitivity 92% [CI, 82%–96%]), and MDR-TB in 46/49 (sensitivity, 94% [CI, 83%–98%]). The specificity for the detection of RIF-resistant and MDR-TB cases was 100% (CI, 98%–100%), while that of INH resistance was 99% (CI, 97%–100%). The agreement between the two tests for the detection of MDR-TB was very good (Kappa = 0.96 [CI, 0.92–1.00]). Among the 3 missed MDR-TB cases, the Genotype MTBDRplus assay classified two samples as RIF-monoresistant and one as INH monoresistant. The most frequent mutations detected by the Genotype MTBDRplus assay was the rpoB S531 L MUT3 41/49 (84%) in RIF-resistant isolates, and the KatG S315 T1 (MUT1) 35/55 (64%) and inhA C15T (MUT1) 20/55 (36%) mutations in INH-resistant isolates. Conclusion The Genotype MTBDRplus assay had good accuracy and could be used for the diagnosis of MDR-TB in Cameroon. For routine MDR-TB diagnosis, this assay could be used for Mycobacterium tuberculosis cultures containing contaminants, to complement culture-based drug susceptibility testing or to determine drug resistant mutations

    S1 Dataset -

    No full text
    BackgroundFebrile jaundice is a common indicator of certain infectious diseases, including hepatitis E. In Cameroon, the yellow fever virus is the only pathogen that is monitored in patients who present with this symptom. However, more than 90% of the samples received as part of this surveillance are negative for yellow fever. This study aimed to describe the prevalence and hepatitis E virus (HEV) genotype among yellow fever-negative patients in the Far North and West regions of Cameroon.MethodsIn a cross-sectional study, yellow fever surveillance-negative samples collected between January 2021 and January 2023 were retrospectively analyzed. Anti-HEV IgM and IgG antibodies were tested using commercially available ELISA kits. Anti-HEV IgM and/or IgG positive samples were tested for HEV RNA by real-time RT-PCR, followed by nested RT-PCR, sequencing and phylogenetic analysis.ResultsOverall, 121 of the 543 samples (22.3%, 95% CI: 19.0% - 26.0%) were positive for at least one anti-HEV marker. Amongst these, 8.1% (44/543) were positive for anti-HEV IgM, 5.9% (32/543) for anti-HEV IgG, and 8.3% (45/544) for both markers. A total of 15.2% (12/79) samples were positive for HEV RNA real-time RT-PCR and 8 samples were positive for HEV RNA by nested RT-PCR. Phylogenetic analysis showed that the retrieved sequences clustered within HEV genotypes/subtypes 1/1e, 3/3f and 4/4b.ConclusionOur results showed that HEV is one of the causes of acute febrile jaundice in patients enrolled in the yellow fever surveillance program in two regions of Cameroon. We described the circulation of three HEV genotypes, including two zoonotic genotypes. Further studies will be important to elucidate the transmission routes of these zoonotic HEV genotypes to humans in Cameroon.</div

    Phylogenetic tree based on a fragment of the ORF2 region of GenBank sequences.

    No full text
    Subtyping classification according to Smith et al. (2016) proposed standard HEV strains for subtyping. Only bootstrap values > 70% are presented. The accession number, genotype/subtype, country of origin and host are shown for each GenBank HEV strain used in the phylogenetic analysis. The strains identified in this study are indicated by â–Č, coloured red and accession number.</p
    corecore