2,303 research outputs found

    Analysis of Productive Performance of Crop and Animal Production Systems: An Integrated Analytical Framework

    Get PDF
    This article presents a two-stage analytical framework that integrates ecological crop (animal) growth and economic frontier production models to analyse the productive efficiency of crop (animal) production systems. The ecological crop (animal) growth model estimates "potential" output levels given the genetic characteristics of crops (animals) and the physical conditions of locations where the crops (animals) are grown (reared). The economic frontier production model estimates "best practice" production levels, taking into account economic, institutional and social factors that cause farm and spatial heterogeneity. In the first stage, both ecological crop growth and economic frontier production models are estimated to calculate three measures of productive efficiency: (1) technical efficiency, as the ratio of actual to "best practice" output levels; (2) agronomic efficiency, as the ratio of actual to "potential" output levels; and (3) agro-economic efficiency, as the ratio of "best practice" to "potential" output levels. Also in the first stage, the economic frontier production model identifies factors that determine technical efficiency. In the second stage, agro-economic efficiency is analysed econometrically in relation to economic, institutional and social factors that cause farm and spatial heterogeneity. The proposed framework has several important advantages in comparison with existing proposals. Firstly, it allows the systematic incorporation of all physical, economic, institutional and social factors that cause farm and spatial heterogeneity in analysing the productive performance of crop and animal production systems. Secondly, the location-specific physical factors are not modelled symmetrically as other economic inputs of production. Thirdly, climate change and technological advancements in crop and animal sciences can be modelled in a "forward-looking" manner. Fourthly, knowledge in agronomy and data from experimental studies can be utilised for socio-economic policy analysis. The proposed framework can be easily applied in empirical studies due to the current availability of ecological crop (animal) growth models, farm or secondary data, and econometric software packages. The article highlights several directions of empirical studies that researchers may pursue in the future.agro-economic efficiency, agronomic efficiency, crop growth model, frontier production model, farm heterogeneity, spatial heterogeneity

    A Multi-Scan Labeled Random Finite Set Model for Multi-object State Estimation

    Full text link
    State space models in which the system state is a finite set--called the multi-object state--have generated considerable interest in recent years. Smoothing for state space models provides better estimation performance than filtering by using the full posterior rather than the filtering density. In multi-object state estimation, the Bayes multi-object filtering recursion admits an analytic solution known as the Generalized Labeled Multi-Bernoulli (GLMB) filter. In this work, we extend the analytic GLMB recursion to propagate the multi-object posterior. We also propose an implementation of this so-called multi-scan GLMB posterior recursion using a similar approach to the GLMB filter implementation

    Assessing eco-environmental performance of agricultural production in OECD countries: combination of soil surface, soil system and farm gate methods of nutrient auditing

    Get PDF
    Nitrogen balance is increasingly used as an indicator of the environmental performance of agricultural sector in national, international, and global contexts. There are three main methods of accounting the national nitrogen balance: farm gate, soil surface, and soil system. OECD (2008) recently reported the nitrogen and phosphorus balances for member countries for the 1985 - 2004 period using the soil surface method. The farm gate and soil system methods were also used in some international projects. Some studies have provided the comparison among these methods and the conclusion is mixed. The motivation of this present paper was to combine these three methods to provide a more detailed auditing of the nitrogen balance and flows for national agricultural production. In addition, the present paper also provided a new strategy of using reliable international and national data sources to calculate nitrogen balance using the farm gate method. The empirical study focused on the nitrogen balance of OECD countries for the period from 1985 to 2003. The N surplus sent to the total environment of OECD surged dramatically in early 1980s, gradually decreased during 1990s but exhibited an increasing trends in early 2000s. The overall N efficiency however fluctuated without a clear increasing trend. The eco-environmental ranking shows that Australia and Ireland were the worst while Korea and Greece were the best.

    A new framework of measuring national nutrients balance for international and global comparison

    Get PDF
    Nutrients balance such as nitrogen and phosphorus balance are increasingly used as an indicator of the environmental performance of agricultural sector in international and global context. However there still is a lack of harmony in the use of methods for estimating the nutrients balance among countries. This is because of the disagreement regarding the accuracy and uncertainty of different accounting methods. The lack of harmony in the methods used in different countries further increases the uncertainty in the context of the international comparisons. This paper provides a new framework for nutrients balance calculation using the farm-gate accounting method. The calculation under this new framework takes advantage of availability of data from FAO and other reliable national and international sources. Due to this, the proposed framework is highly adaptable in many countries, making the global comparison feasible. The paper also proposes three criteria including adaptability, accuracy and interpretability to assess the appropriateness of nutrients accounting method. Based on these criteria, the paper provides a comprehensive comparison of the farm-gate and soil-surface methods in accounting country-level nutrients balance of agricultural production. The paper identifies some shortcomings of the soil-surface balance and shows that the farm-gate method has a greater potential of providing a more accurate and meaningful estimation of national nutrients balance.

    MEASUREMENT OF AGRICULTURAL TOTAL FACTOR PRODUCTIVITY GROWTH INCORPORATING ENVIRONMENTAL FACTORS: A NUTRIENTS BALANCE APPROACH

    Get PDF
    This paper develops a new measure of total factor productivity growth in agricultural production which incorporates environmental effects. The new measure is called the Total Factor Nutrient-Orientated Productivity (TFNP) Index, and incorporates a materials balance condition. TFNP measures changes in nutrient-orientated efficiency and can be decomposed into efficiency change (EC), technological change (TC) and nutrient-orientated technological change (NTC) components. An empirical analysis, involving country-level data from OECD countries during 1990-2003, is provided using DEA methods. Estimates of mean technical and nutrient-orientated efficiency are 0.798 and 0.526, respectively. Estimated mean TFNP growth is 1.5% per year, with nutrient-orientated technological progress contributing 0.8%.Total factor productivity, environment, nutrient balance, DEA, Productivity Analysis, Environmental Economics and Policy,

    The development of a portable optical system for telemonitoring of skin blood oxygen level

    Get PDF
    Oxygen is one of the keys parameters required for tissues metabolism to ensure life sustainability. Without it, human’s health would suffer and eventually result in fatal. Cells consume oxygen to break down sugar to produce adenosine triphosphate (ATP) during cellular respiration [1]. ATPs are the main source of energy for metabolic functions [2] and every cell in the body, especially muscles cell, for its ability to store and use energy; muscle would not contract or relax without ATP. Cell is not able to function well under the condition of low oxygen level, thus it would lead to hypoxemia. If left untreated, severe hypoxemia can be fatal [3]
    corecore