94 research outputs found

    The genome of the Tiger Milk mushroom, Lignosus rhinocerotis, provides insights into the genetic basis of its medicinal properties

    No full text
    BACKGROUND The sclerotium of Lignosus rhinocerotis (Cooke) Ryvarden or Tiger milk mushroom (Polyporales, Basidiomycota) is a valuable folk medicine for indigenous peoples in Southeast Asia. Despite the increasing interest in this ethnobotanical mushroom, very little is known about the molecular and genetic basis of its medicinal and nutraceutical properties. RESULTS The de novo assembled 34.3 Mb L. rhinocerotis genome encodes 10,742 putative genes with 84.30% of them having detectable sequence similarities to others available in public databases. Phylogenetic analysis revealed a close evolutionary relationship of L. rhinocerotis to Ganoderma lucidum, Dichomitus squalens, and Trametes versicolor in the core polyporoid clade. The L. rhinocerotis genome encodes a repertoire of enzymes engaged in carbohydrate and glycoconjugate metabolism, along with cytochrome P450s, putative bioactive proteins (lectins and fungal immunomodulatory proteins) and laccases. Other genes annotated include those encoding key enzymes for secondary metabolite biosynthesis, including those from polyketide, nonribosomal peptide, and triterpenoid pathways. Among them, the L. rhinocerotis genome is particularly enriched with sesquiterpenoid biosynthesis genes. CONCLUSIONS The genome content of L. rhinocerotis provides insights into the genetic basis of its reported medicinal properties as well as serving as a platform to further characterize putative bioactive proteins and secondary metabolite pathway enzymes and as a reference for comparative genomics of polyporoid fungi.This research is supported by High Impact Research Grant UM.C/625/1/HIR/ MoE/E20040-20001 from the University of Malaya/Ministry of Education, Malaysia. H-YYY is supported by the postgraduate research grant (PPP) PV024/ 2012A from University of Malaya, Malaysia. Y-HC is a recipient of Australian Research Council Discovery Early Career Researcher Award (ARC DECRA)

    The genome of the Tiger Milk mushroom, Lignosus rhinocerotis, provides insights into the genetic basis of its medicinal properties

    Get PDF
    BACKGROUND: The sclerotium of Lignosus rhinocerotis (Cooke) Ryvarden or Tiger milk mushroom (Polyporales, Basidiomycota) is a valuable folk medicine for indigenous peoples in Southeast Asia. Despite the increasing interest in this ethnobotanical mushroom, very little is known about the molecular and genetic basis of its medicinal and nutraceutical properties. RESULTS: The de novo assembled 34.3 Mb L. rhinocerotis genome encodes 10,742 putative genes with 84.30% of them having detectable sequence similarities to others available in public databases. Phylogenetic analysis revealed a close evolutionary relationship of L. rhinocerotis to Ganoderma lucidum, Dichomitus squalens, and Trametes versicolor in the core polyporoid clade. The L. rhinocerotis genome encodes a repertoire of enzymes engaged in carbohydrate and glycoconjugate metabolism, along with cytochrome P450s, putative bioactive proteins (lectins and fungal immunomodulatory proteins) and laccases. Other genes annotated include those encoding key enzymes for secondary metabolite biosynthesis, including those from polyketide, nonribosomal peptide, and triterpenoid pathways. Among them, the L. rhinocerotis genome is particularly enriched with sesquiterpenoid biosynthesis genes. CONCLUSIONS: The genome content of L. rhinocerotis provides insights into the genetic basis of its reported medicinal properties as well as serving as a platform to further characterize putative bioactive proteins and secondary metabolite pathway enzymes and as a reference for comparative genomics of polyporoid fungi. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2164-15-635) contains supplementary material, which is available to authorized users

    Heterologous expression of cytotoxic sesquiterpenoids from the medicinal mushroom Lignosus rhinocerotis in yeast

    Get PDF
    Background: Genome mining facilitated by heterologous systems is an emerging approach to access the chemical diversity encoded in basidiomycete genomes. In this study, three sesquiterpene synthase genes, GME3634, GME3638, and GME9210, which were highly expressed in the sclerotium of the medicinal mushroom Lignosus rhinocerotis, were cloned and heterologously expressed in a yeast system. Results: Metabolite profile analysis of the yeast culture extracts by GC-MS showed the production of several sesquiterpene alcohols (C15H26O), including cadinols and germacrene D-4-ol as major products. Other detected sesquiterpenes include selina-6-en-4-ol, β-elemene, β-cubebene, and cedrene. Two purified major compounds namely (+)-torreyol and α-cadinol synthesised by GME3638 and GME3634 respectively, are stereoisomers and their chemical structures were confirmed by 1H and 13C NMR. Phylogenetic analysis revealed that GME3638 and GME3634 are a pair of orthologues, and are grouped together with terpene synthases that synthesise cadinenes and related sesquiterpenes. (+)-Torreyol and α-cadinol were tested against a panel of human cancer cell lines and the latter was found to exhibit selective potent cytotoxicity in breast adenocarcinoma cells (MCF7) with IC50 value of 3.5 ± 0.58 μg/ml while α-cadinol is less active (IC50 = 18.0 ± 3.27 μg/ml). Conclusions: This demonstrates that yeast-based genome mining, guided by transcriptomics, is a promising approach for uncovering bioactive compounds from medicinal mushroomsH-YYY is supported by an Australian Awards Endeavour Research Fellowship. MJM-G received an Australian Awards Endeavour Scholarship and a Mexican CONACYT scholarship. YH-C is supported by an Australian Research Council Future Fellowship (FT160100233). This work was partially supported by Funda‑ mental Research Grant Scheme (FRGS): FP029-2014A from Ministry of Science, Technology and Innovation, Malaysia, and Postgraduate Research Grant (PPP): PG144/2014B from University of Malaya

    Heterologous expression of cytotoxic sesquiterpenoids from the medicinal mushroom Lignosus rhinocerotis in yeast

    Get PDF
    Background: Genome mining facilitated by heterologous systems is an emerging approach to access the chemical diversity encoded in basidiomycete genomes. In this study, three sesquiterpene synthase genes, GME3634, GME3638, and GME9210, which were highly expressed in the sclerotium of the medicinal mushroom Lignosus rhinocerotis, were cloned and heterologously expressed in a yeast system. Results: Metabolite profile analysis of the yeast culture extracts by GC-MS showed the production of several sesquiterpene alcohols (C 15 H 26 O), including cadinols and germacrene D-4-ol as major products. Other detected sesquiterpenes include selina-6-en-4-ol, ß-elemene, ß-cubebene, and cedrene. Two purified major compounds namely (+)-torreyol and a-cadinol synthesised by GME3638 and GME3634 respectively, are stereoisomers and their chemical structures were confirmed by 1 H and 13 C NMR. Phylogenetic analysis revealed that GME3638 and GME3634 are a pair of orthologues, and are grouped together with terpene synthases that synthesise cadinenes and related sesquiterpenes. (+)-Torreyol and a-cadinol were tested against a panel of human cancer cell lines and the latter was found to exhibit selective potent cytotoxicity in breast adenocarcinoma cells (MCF7) with IC 50 value of 3.5 ± 0.58 µg/ml while a-cadinol is less active (IC 50 = 18.0 ± 3.27 µg/ml). Conclusions: This demonstrates that yeast-based genome mining, guided by transcriptomics, is a promising approach for uncovering bioactive compounds from medicinal mushrooms

    <i>De Novo</i> Assembly of Venom Gland Transcriptome of <i>Tropidolaemus wagleri</i> (Temple Pit Viper, Malaysia) and Insights into the Origin of Its Major Toxin, Waglerin

    No full text
    The venom proteome of Temple Pit Viper (Tropidolaemus wagleri) is unique among pit vipers, characterized by a high abundance of a neurotoxic peptide, waglerin. To further explore the genetic diversity of its toxins, the present study de novo assembled the venom gland transcriptome of T. wagleri from west Malaysia. Among the 15 toxin gene families discovered, gene annotation and expression analysis reveal the dominating trend of bradykinin-potentiating peptide/angiotensin-converting enzyme inhibitor-C-type natriuretic peptide (BPP/ACEI-CNP, 76.19% of all-toxin transcription) in the transcriptome, followed by P-III snake venom metalloproteases (13.91%) and other toxins. The transcript TwBNP01 of BPP/ACEI-CNP represents a large precursor gene (209 amino acid residues) containing the coding region for waglerin (24 residues). TwBNP01 shows substantial sequence variations from the corresponding genes of its sister species, Tropidolaemus subannulatus of northern Philippines, and other viperid species which diversely code for proline-rich small peptides such as bradykinin-potentiating peptides (BPPs). The waglerin/waglerin-like peptides, BPPs and azemiopsin are proline-rich, evolving de novo from multiple highly diverged propeptide regions within the orthologous BPP/ACEI-CNP genes. Neofunctionalization of the peptides results in phylogenetic constraints consistent with a phenotypic dichotomy, where Tropidolaemus spp. and Azemiops feae convergently evolve a neurotoxic trait while vasoactive BPPs evolve only in other species

    Isolation, characterization and antigenic cross-reactivities of the major hemorrhagin from <i style="mso-bidi-font-style: normal">Cryptelytrops purpureomaculatus </i>venom

    No full text
    1063-1069The major hemorrhagin from C. purpureomaculatus (mangrove pit viper) venom was purified to homogeneity and termed Maculatoxin. Maculatoxin has a molecular weight of 38 kDa as determined by SDS-PAGE. It is an acidic protein (pI= 4.2) and exhibited proteolytic and hemorrhagic activities (MHD10 = 0.84 ÎĽg in mice) but was not lethal to mice at a dose of 1 ÎĽg/g. The hemorrhagic activity of Maculatoxin was completely inactivated by EDTA and partially inhibited by ATP and citrate. The N-terminal sequence of Maculatoxin (TPEQQRFPPTYIDLGIFVDHGMYAT) shares a significant degree of homology with the metalloprotease domain of other venom hemorrhagins. Indirect ELISA showed anti-Maculatoxin cross reacted with protein components of many snake venoms. In the double-sandwich ELISA, however, anti-Maculatoxin cross-reacted only with venoms of certain species of the Trimeresurus (Asia lance-head viper) complex, and the results support the recent proposed taxonomy changes concerning the Trimeresurus complex

    Antivenom Cross-Neutralization of the Venoms of Hydrophis schistosus and Hydrophis curtus, Two Common Sea Snakes in Malaysian Waters

    No full text
    Sea snake envenomation is a serious occupational hazard in tropical waters. In Malaysia, the beaked sea snake (Hydrophis schistosus, formerly known as Enhydrina schistosa) and the spine-bellied sea snake (Hydrophis curtus, formerly known as Lapemis curtus or Lapemis hardwickii) are two commonly encountered species. Australian CSL sea snake antivenom is the definitive treatment for sea snake envenomation; it is unfortunately extremely costly locally and is not widely available or adequately stocked in local hospitals. This study investigated the cross-neutralizing potential of three regionally produced anti-cobra antivenoms against the venoms of Malaysian H. schistosus and H. curtus. All three antivenoms conferred paraspecific protection from sea snake venom lethality in mice, with potency increasing in the following order: Taiwan bivalent antivenom &lt; Thai monocled cobra monovalent antivenom &lt; Thai neuro polyvalent antivenom (NPAV). NPAV demonstrated cross-neutralizing potencies of 0.4 mg/vial for H. schistosus venom and 0.8 mg/vial for H. curtus, which translates to a dose of less than 20 vials of NPAV to neutralize an average amount of sea snake venom per bite (inferred from venom milking). The cross-neutralization activity was supported by ELISA cross-reactivity between NPAV and the venoms of H. schistosus (58.4%) and H. curtus (70.4%). These findings revealed the potential of NPAV as a second-line treatment for sea snake envenomation in the region. Further profiling of the cross-neutralization activity should address the antivenomic basis using purified toxin-based assays

    Sub-acute Toxicity Study of Tiger Milk Mushroom Lignosus tigris Chon S. Tan Cultivar E Sclerotium in Sprague Dawley Rats

    No full text
    Lignosus also known as Tiger Milk Mushroom, is classified in the family Polyporaceae and mainly consumed for its medicinal properties in Southeast Asia and China. The sclerotium is known as the part with medicinal value and often used by the natives to treat a variety of ailments. Lignosus tigris Chon S. Tan, one of the species of the Malaysia Tiger Milk mushroom, has recently been successfully cultivated in laboratory. Earlier studies have demonstrated the L. tigris cultivar E sclerotia exhibited beneficial biomedicinal properties. This study evaluated the potential toxicity of L. tigris E sclerotia in a 28-day sub-acute oral administration in Sprague Dawley (SD) rats. L. tigris E sclerotial powder was administered orally at three different doses of 250, 500 and 1000 mg/kg to the SD rats once daily, consecutively for 28 days. Body weight of the rats was recorded and general behavior, adverse effects and mortality were observed daily throughout the experimental period. At the end of the experiment, blood hematology and biochemistry, relative organ weights and histopathological analysis were performed. Results showed that there were no mortality nor signs of toxicity throughout the 28-day sub-acute toxicity study. Oral administration of the L. tigris E sclerotial powder at daily dose up to 1000 mg/kg had no significant effects in body weight, relative organ weight, blood hematological and biochemistry, gross pathology and histopathology of the organs. L. tigris E sclerotial powder did not cause any treatment-related adverse effect in the rats at different treatment dosages up to 1000 mg/kg. As the lethal dose for the rats is above 1000 mg/kg, the no-observed-adverse-effect level (NOAEL) dose is more than 1000 mg/kg

    Fig.5a_3FTx_All_Jalview

    No full text
    Primary multiple sequence alignment of Fig.5a (All MOh 3FTxs) performed with MUSCLE program using Jalview software
    • …
    corecore