150 research outputs found

    Integrated mRNA and microRNA transcriptome sequencing characterizes sequence variants and mRNA – microRNA regulatory network in nasopharyngeal carcinoma model systems

    Get PDF
    Nasopharyngeal carcinoma (NPC) is a prevalent malignancy in Southeast Asia among the Chinese population. Aberrant regulation of transcripts has been implicated in many types of cancers including NPC. Herein, we characterized mRNA and miRNA transcriptomes by RNA sequencing (RNASeq) of NPC model systems. Matched total mRNA and small RNA of undifferentiated Epstein-Barr virus (EBV)-positive NPC xenograft X666 and its derived cell line C666, well-differentiated NPC cell line HK1, and the immortalized nasopharyngeal epithelial cell line NP460 were sequenced by Solexa technology. We found 2812 genes and 149 miRNAs (human and EBV) to be differentially expressed in NP460, HK1, C666 and X666 with RNASeq; 533 miRNA-mRNA target pairs were inversely regulated in the three NPC cell lines compared to NP460. Integrated mRNA/miRNA expression profiling and pathway analysis show extracellular matrix organization, Beta-1 integrin cell surface interactions, and the PI3K/AKT, EGFR, ErbB, and Wnt pathways were potentially deregulated in NPC. Real-time quantitative PCR was performed on selected mRNA/miRNAs in order to validate their expression. Transcript sequence variants such as short insertions and deletions (INDEL), single nucleotide variant (SNV), and isomiRs were characterized in the NPC model systems. A novel TP53 transcript variant was identified in NP460, HK1, and C666. Detection of three previously reported novel EBV-encoded BART miRNAs and their isomiRs were also observed. Meta-analysis of a model system to a clinical system aids the choice of different cell lines in NPC studies. This comprehensive characterization of mRNA and miRNA transcriptomes in NPC cell lines and the xenograft provides insights on miRNA regulation of mRNA and valuable resources on transcript variation and regulation in NPC, which are potentially useful for mechanistic and preclinical studies. © 2014 The Authors.published_or_final_versio

    Immunotherapy targeting isoDGR-protein damage extends lifespan in a mouse model of protein deamidation

    Get PDF
    \ua9 2023 The Authors. Published under the terms of the CC BY 4.0 license. Aging results from the accumulation of molecular damage that impairs normal biochemical processes. We previously reported that age-linked damage to amino acid sequence NGR (Asn-Gly-Arg) results in “gain-of-function” conformational switching to isoDGR (isoAsp-Gly-Arg). This integrin-binding motif activates leukocytes and promotes chronic inflammation, which are characteristic features of age-linked cardiovascular disorders. We now report that anti-isoDGR immunotherapy mitigates lifespan reduction of Pcmt1−/− mouse. We observed extensive accumulation of isoDGR and inflammatory cytokine expression in multiple tissues from Pcmt1−/− and naturally aged WT animals, which could also be induced via injection of isoDGR-modified plasma proteins or synthetic peptides into young WT animals. However, weekly injection of anti-isoDGR mAb (1 mg/kg) was sufficient to significantly reduce isoDGR-protein levels in body tissues, decreased pro-inflammatory cytokine concentrations in blood plasma, improved cognition/coordination metrics, and extended the average lifespan of Pcmt1−/− mice. Mechanistically, isoDGR-mAb mediated immune clearance of damaged isoDGR-proteins via antibody-dependent cellular phagocytosis (ADCP). These results indicate that immunotherapy targeting age-linked protein damage may represent an effective intervention strategy in a range of human degenerative disorders

    Endothelial Damage Arising From High Salt Hypertension Is Elucidated by Vascular Bed Systematic Profiling

    Get PDF
    Background: Considerable evidence links dietary salt intake with the development of hypertension, left ventricular hypertrophy, and increased risk of stroke and coronary heart disease. Despite extensive epidemiological and basic science interrogation of the relationship between high salt (HS) intake and blood pressure, it remains unclear how HS impacts endothelial cell (EC) and vascular structure in vivo. This study aims to elucidate HS-induced vascular pathology using a differential systemic decellularization in vivo approach. Methods: We performed systematic molecular characterization of the endothelial glycocalyx and EC proteomes in mice with HS (8%) diet–induced hypertension versus healthy control animals. Isolation of eGC and EC compartments was achieved using differential systemic decellularization in vivo methodology. Altered protein expression in hypertensive compared to normal mice was characterized by liquid chromatography tandem mass spectrometry. Proteomic results were validated using functional assays, microscopic imaging, and histopathologic evaluation. Results: Proteomic analysis revealed a significant downregulation of eGC and associated proteins in HS diet–induced hypertensive mice (among 1696 proteins identified in this group, 723 were markedly decreased in abundance, while only 168 were increased in abundance. Bioinformatic analysis indicated substantial derangement of the eGC layer, which was subsequently confirmed by fluorescent and electron microscopy assessment of vessel damage ex vivo. In the EC fraction, HS-induced hypertension significantly altered protein mediators of contractility, metabolism, mechanotransduction, renal function, and the coagulation cascade. In particular, we observed dysregulation of integrin subunits α2, α2b, and α5, which was associated with arterial wall inflammation and substantial infiltration of CD68+ monocyte-macrophages. Consequently, HS-induced hypertensive mice also displayed reduced vascular integrity of multiple organs including lungs, kidneys, and heart. Conclusions: These findings provide novel molecular insight into HS-induced structural changes in eGC and EC composition that may increase cardiovascular risk and potentially guide the development of new diagnostics and therapeutic interventions

    Search for a Technicolor omega_T Particle in Events with a Photon and a b-quark Jet at CDF

    Full text link
    If the Technicolor omega_T particle exists, a likely decay mode is omega_T -> gamma pi_T, followed by pi_T -> bb-bar, yielding the signature gamma bb-bar. We have searched 85 pb^-1 of data collected by the CDF experiment at the Fermilab Tevatron for events with a photon and two jets, where one of the jets must contain a secondary vertex implying the presence of a b quark. We find no excess of events above standard model expectations. We express the result of an exclusion region in the M_omega_T - M_pi_T mass plane.Comment: 14 pages, 2 figures. Available from the CDF server (PS with figs): http://www-cdf.fnal.gov/physics/pub98/cdf4674_omega_t_prl_4.ps FERMILAB-PUB-98/321-

    Overexpression of FOXG1 contributes to TGF-β resistance through inhibition of p21WAF1/CIP1 expression in ovarian cancer

    Get PDF
    Background:Loss of growth inhibitory response to transforming growth factor-Β (TGF-Β) is a common feature of epithelial cancers. Recent studies have reported that genetic lesions and overexpression of oncoproteins in TGF-Β/Smads signalling cascade contribute to the TGF-Β resistance. Here, we showed that the overexpressed FOXG1 was involved in attenuating the anti-proliferative control of TGF-Β/Smads signalling in ovarian cancer.Methods:FOXG1 and p21 WAF1/CIP1 expressions were evaluated by real-time quantitative reverse-transcription polymerase chain reaction (RT-PCR), western blot and immunohistochemical analyses. The effect of FOXG1 on p21 WAF1/CIP1 transcriptional activity was examined by luciferase reporter assays. Cell lines stably expressing or short hairpin RNA interference-mediated knockdown FOXG1 were established for studying the gain-or-loss functional effects of FOXG1. XTT cell proliferation assay was used to measure cell growth of ovarian cancer cells.Results:Quantitative RT-PCR and western blot analyses showed that FOXG1 was upregulated and inversely associated with the expression levels of p21 WAF1/CIP1 in ovarian cancer. The overexpression of FOXG1 was significantly correlated with high-grade ovarian cancer (P0.025). Immunohistochemical analysis on ovarian cancer tissue array was further evidenced that FOXG1 was highly expressed and significantly correlated with high-grade ovarian cancer (P0.048). Functionally, enforced expression of FOXG1 selectively blocked the TGF-Β-induced p21 WAF1/CIP1 expressions and increased cell proliferation in ovarian cancer cells. Conversely, FOXG1 knockdown resulted in a 20-26% decrease in cell proliferation together with 16-33% increase in p21 WAF1/CIP1 expression. Notably, FOXG1 was able to inhibit the p21 WAF1/CIP1 promoter activity in a p53-independent manner by transient reporter assays.ConclusionOur results suggest that FOXG1 acts as an oncoprotein inhibiting TGF-Β-mediated anti-proliferative responses in ovarian cancer cells through suppressing p21 WAF1/CIP1 transcription. © 2009 Cancer Research UK All rights reserved.published_or_final_versio

    New statistical potential for quality assessment of protein models and a survey of energy functions

    Get PDF
    Abstract Background Scoring functions, such as molecular mechanic forcefields and statistical potentials are fundamentally important tools in protein structure modeling and quality assessment. Results The performances of a number of publicly available scoring functions are compared with a statistical rigor, with an emphasis on knowledge-based potentials. We explored the effect on accuracy of alternative choices for representing interaction center types and other features of scoring functions, such as using information on solvent accessibility, on torsion angles, accounting for secondary structure preferences and side chain orientation. Partially based on the observations made, we present a novel residue based statistical potential, which employs a shuffled reference state definition and takes into account the mutual orientation of residue side chains. Atom- and residue-level statistical potentials and Linux executables to calculate the energy of a given protein proposed in this work can be downloaded from http://www.fiserlab.org/potentials. Conclusions Among the most influential terms we observed a critical role of a proper reference state definition and the benefits of including information about the microenvironment of interaction centers. Molecular mechanical potentials were also tested and found to be over-sensitive to small local imperfections in a structure, requiring unfeasible long energy relaxation before energy scores started to correlate with model quality.</p

    Esophagectomy without mortality: What can surgeons do?

    Get PDF
    Introduction: Surgical resection remains the mainstay treatment for patients with localized esophageal cancer. It is, however, a complex procedure. Mortality rate used to be high, but in recent years, death rate has been reduced to below 5% in specialized centers. Methods: Outcome of esophagectomy can be improved by paying attention to (1) appropriate patient section, (2) choice of surgical techniques and their execution, and (3) optimizing perioperative care. A volume-outcome relationship is also evident. Surgeons can perform esophagectomy without mortality, but a multi-disciplinary team management is essential to achieve this goal. © 2009 The Society for Surgery of the Alimentary Tract.postprin
    corecore