37 research outputs found

    Protective effects and potential mechanisms of Pien Tze Huang on cerebral chronic ischemia and hypertensive stroke

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Stroke caused by brain ischemia is the third leading cause of adult disability. Active prevention and early treatment of stroke targeting the causes and risk factors may decrease its incidence, mortality and subsequent disability. Pien Tze Huang (PZH), a Chinese medicine formula, was found to have anti-edema, anti-inflammatory and anti-thrombotic effects that can prevent brain damage. This study aims to investigate the potential mechanisms of the preventive effects of Pien Tze Huang on brain damage caused by chronic ischemia and hypertensive stroke in rats.</p> <p>Methods</p> <p>The effects of Pien Tze Huang on brain protein expression in spontaneously hypertensive rat (SHR) and stroke prone SHR (SHRsp) were studied with 2-D gel electrophoresis and mass spectrometric analysis with a matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF)/TOF tandem mass spectrometer and on brain cell death with enzyme link immunosorbent assay (ELISA) and immunostaining.</p> <p>Results</p> <p>Pien Tze Huang decreased cell death in hippocampus and cerebellum caused by chronic ischemia and hypertensive stroke. Immunostaining of caspase-3 results indicated that Pien Tze Huang prevents brain cells from apoptosis caused by ischemia. Brain protein expression results suggested that Pien Tze Huang downregulated QCR<sub>2 </sub>in the electron transfer chain of mitochondria preventing reactive oxygen species (ROS) damage and possibly subsequent cell death (caspase 3 assay) as caused by chronic ischemia or hypertensive stroke to hippocampus and cerebellum.</p> <p>Conclusion</p> <p>Pien Tze Huang showed preventive effects on limiting the damage or injury caused by chronic ischemia and hypertensive stroke in rats. The effect of Pien Tze Huang was possibly related to prevention of cell death from apoptosis or ROS/oxidative damage in mitochondria.</p

    Technical Aspects of Flow Cytometry-based Measurable Residual Disease Quantification in Acute Myeloid Leukemia: Experience of the European LeukemiaNet MRD Working Party

    Get PDF
    Measurable residual disease (MRD) quantified by multiparameter flow cytometry (MFC) is a strong and independent prognostic factor in acute myeloid leukemia (AML). However, several technical factors may affect the final read-out of the assay. Experts from the MRD Working Party of the European LeukemiaNet evaluated which aspects are crucial for accurate MFC-MRD measurement. Here, we report on the agreement, obtained via a combination of a cross-sectional questionnaire, live discussions, and a Delphi poll. The recommendations consist of several key issues from bone marrow sampling to final laboratory reporting to ensure quality and reproducibility of results. Furthermore, the experiences were tested by comparing two 8-color MRD panels in multiple laboratories. The results presented here underscore the feasibility and the utility of a harmonized theoretical and practical MFC-MRD assessment and are a next step toward further harmonization

    MRD Tailored Therapy in AML: What We Have Learned So Far

    No full text
    Acute myeloid leukemia (AML) is a heterogeneous clonal disease associated with a dismal survival, partly due to the frequent occurrence of relapse. Many patient- and leukemia-specific characteristics, such as age, cytogenetics, mutations, and measurable residual disease (MRD) after intensive chemotherapy, have shown to be valuable prognostic factors. MRD has become a rich field of research where many advances have been made regarding technical, biological, and clinical aspects, which will be the topic of this review. Since many laboratories involved in AML diagnostics have experience in immunophenotyping, multiparameter flow cytometry (MFC) based MRD is currently the most commonly used method. Although molecular, quantitative PCR based techniques may be more sensitive, their disadvantage is that they can only be applied in a subset of patients harboring the genetic aberration. Next-generation sequencing can assess and quantify mutations in many genes but currently does not offer highly sensitive MRD measurements on a routine basis. In order to provide reliable MRD results, MRD assay optimization and standardization is essential. Different techniques for MRD assessment are being evaluated, and combinations of the methods have shown promising results for improving its prognostic value. In this regard, the load of leukemic stem cells (LSC) has also been shown to add to the prognostic value of MFC-MRD. At this moment, MRD after intensive chemotherapy is most often used as a prognostic factor to help stratify patients, but also to select the most appropriate consolidation therapy. For example, to guide post-remission treatment for intermediate-risk patients where MRD positive patients receive allogeneic stem cell transplantation and MRD negative receive autologous stem cell transplantation. Other upcoming uses of MRD that are being investigated include: selecting the type of allogeneic stem cell transplantation therapy (donor, conditioning), monitoring after stem cell transplantation (to allow intervention), and determining drug efficacy for the use of a surrogate endpoint in clinical trials

    Structures and conformational dynamics of DNA minidumbbells in pyrimidine-rich repeats associated with neurodegenerative diseases

    No full text
    Expansions of short tandem repeats (STRs) are associated with approximately 50 human neurodegenerative diseases. These pathogenic STRs are prone to form non-B DNA structure, which has been considered as one of the causative factors for repeat expansions. Minidumbbell (MDB) is a relatively new type of non-B DNA structure formed by pyrimidine-rich STRs. An MDB is composed of two tetraloops or pentaloops, exhibiting a highly compact conformation with extensive loop-loop interactions. The MDB structures have been found to form in CCTG tetranucleotide repeats associated with myotonic dystrophy type 2, ATTCT pentanucleotide repeats associated with spinocerebellar ataxia type 10, and the recently discovered ATTTT/ATTTC repeats associated with spinocerebellar ataxia type 37 and familial adult myoclonic epilepsy. In this review, we first introduce the structures and conformational dynamics of MDBs with a focus on the high-resolution structural information determined by nuclear magnetic resonance spectroscopy. Then we discuss the effects of sequence context, chemical environment, and nucleobase modification on the structure and thermostability of MDBs. Finally, we provide perspectives on further explorations of sequence criteria and biological functions of MDBs
    corecore