82 research outputs found

    Experimental and model estimates of the contributions from biogenic monoterpenes and sesquiterpenes to secondary organic aerosol in the southeastern United States

    Get PDF
    Atmospheric organic aerosol (OA) has important impacts on climate and human health but its sources remain poorly understood. Biogenic monoterpenes and sesquiterpenes are important precursors of secondary organic aerosol (SOA), but the amounts and pathways of SOA generation from these precursors are not well constrained by observations. We propose that the less-oxidized oxygenated organic aerosol (LO-OOA) factor resolved from positive matrix factorization (PMF) analysis on aerosol mass spectrometry (AMS) data can be used as a surrogate for fresh SOA from monoterpenes and sesquiterpenes in the southeastern US. This hypothesis is supported by multiple lines of evidence, including lab-in-the-field perturbation experiments, extensive ambient ground-level measurements, and state-of-the-art modeling. We performed lab-in-the-field experiments in which the ambient air is perturbed by the injection of selected monoterpenes and sesquiterpenes, and the subsequent SOA formation is investigated. PMF analysis on the perturbation experiments provides an objective link between LO-OOA and fresh SOA from monoterpenes and sesquiterpenes as well as insights into the sources of other OA factors. Further, we use an upgraded atmospheric model and show that modeled SOA concentrations from monoterpenes and sesquiterpenes could reproduce both the magnitude and diurnal variation of LO-OOA at multiple sites in the southeastern US, building confidence in our hypothesis. We estimate the annual average concentration of SOA from monoterpenes and sesquiterpenes in the southeastern US to be roughly 2µgm^(−3)

    Gas-phase products and secondary aerosol yields from the ozonolysis of ten different terpenes

    Get PDF
    The ozonolyses of six monoterpenes (α-pinene, β-pinene, 3-carene, terpinolene, α-terpinene, and myrcene), two sesquiterpenes (α-humulene and β-caryophyllene), and two oxygenated terpenes (methyl chavicol and linalool) were conducted individually in Teflon chambers to examine the gas-phase oxidation product and secondary organic aerosol (SOA) yields from these reactions. Particle size distribution and number concentration were monitored and allowed for the calculation of the SOA yield from each experiment, which ranged from 1 to 54%. A proton transfer reaction mass spectrometer (PTR-MS) was used to monitor the evolution of gas-phase products, identified by their mass to charge ratio (m/z). Several gas-phase oxidation products, formaldehyde, acetaldehyde, formic acid, acetone, acetic acid, and nopinone, were identified and calibrated. Aerosol yields, and the yields of these identified and calibrated oxidation products, as well as many higher m/z oxidation products observed with the PTR-MS, varied significantly between the different parent terpene compounds. The sum of measured oxidation products in the gas and particle phase ranged from 33 to 77% of the carbon in the reacted terpenes, suggesting there are still unmeasured products from these reactions. The observations of the higher molecular weight oxidation product ions provide evidence of previously unreported compounds and their temporal evolution in the smog chamber from multistep oxidation processes. Many of the observed ions, including m/z 111 and 113, have also been observed in ambient air above a Ponderosa pine forest canopy, and our results confirm they are consistent with products from terpene + O_3 reactions. Many of these products are stable on the timescale of our experiments and can therefore be monitored in field campaigns as evidence for ozone oxidative chemistry

    Source apportionment of organic carbon in Centreville, AL using organosulfates in organic tracer-based positive matrix factorization

    Get PDF
    Organic tracer-based positive matrix factorization (PMF) was used to apportion fine particulate (PM_(2.5)) organic carbon (OC) to its sources in Centreville, AL, USA, a rural forested site influenced by anthropogenic emissions, during the Southern Oxidant and Aerosol Study (SOAS) in the summer of 2013. Model inputs included organosulfates, a group of organic compounds that are tracers of anthropogenically-influenced biogenic secondary organic aerosols (SOA), as well as, OC, elemental carbon, water-soluble organic carbon, and other organic tracers for primary and secondary sources measured during day and night. The organic tracer-based PMF resolved eight factors that were identified as biomass burning (11%, average contribution to PM_(2.5) OC), vehicle emissions (8%), isoprene SOC formed under low-NO_x conditions (13%), isoprene SOC formed under high-NO_x conditions (11%), SOC formed by photochemical reactions (9%), oxidatively aged biogenic SOC (6%), sulfuric acid-influenced SOC (21%, that also includes isoprene and monoterpene SOC), and monoterpene SOC formed under high-NO_x conditions (21%). These results indicate that OC in Centreville during summer is mainly secondary in origin (81%). Fossil fuel combustion is the major source of NO_x, ozone, and sulfuric acid that play a key role in SOA formation in the southeastern US. Fossil fuel was found to influence 61–76% of OC through vehicle emissions and SOA formation. Together with prescribed burns, which were the major type of biomass burning during this study, the OC influenced by anthropogenic activities reached 87%. The organic tracer-based PMF results were further compared with two complementary source apportionment techniques: PMF factors resolved for submicron organic aerosols measured using aerosol mass spectrometry (AMS) by Xu et al. (2015a) in Centreville during SOAS; biomass burning organic aerosols (BBOA, 11% of OC), isoprene-derived organic aerosols (isoprene-OA, 20% of OC), more-oxidized oxygenated organic aerosols (MO-OOA, 34% of OC), and less-oxidized oxygenated organic aerosols (LO-OOA, 35% of OC); and PM_(2.5) OC apportioned by chemical-mass balance model (CMB), considering the same chemical species as this study, save for organosulfates; biomass burning (5%), diesel engines (2%), gasoline smokers (3%), vegetative detritus (1%), isoprene SOC (23%) and monoterpene SOC (34%), and other (likely biogenic secondary) sources (33%). Overall, this study indicates the primary and secondary sources resolved by the organic tracer-based PMF are in good agreement with CMB and AMS-PMF results, while the organic tracer-based PMF provides additional insight to the SOC formation pathways through the inclusion of organosulfates and other organic tracers measured during day and night

    Gas-phase products and secondary aerosol yields from the photooxidation of 16 different terpenes

    Get PDF
    The photooxidation of isoprene, eight monoterpenes, three oxygenated monoterpenes, and four sesquiterpenes were conducted individually at the Caltech Indoor Chamber Facility under atmospherically relevant HC:NO_x ratios to monitor the time evolution and yields of SOA and gas-phase oxidation products using PTR-MS. Several oxidation products were calibrated in the PTR-MS, including formaldehyde, acetaldehyde, formic acid, acetone, acetic acid, nopinone, methacrolein + methyl vinyl ketone; other oxidation products were inferred from known fragmentation patterns, such as pinonaldehyde; and other products were identified according to their mass to charge (m/z) ratio. Numerous unidentified products were formed, and the evolution of first- and second-generation products was clearly observed. SOA yields from the different terpenes ranged from 1 to 68%, and the total gas- plus particle-phase products accounted for ∼50–100% of the reacted carbon. The carbon mass balance was poorest for the sesquiterpenes, suggesting that the observed products were underestimated or that additional products were formed but not detected by PTR-MS. Several second-generation products from isoprene photooxidation, including m/z 113, and ions corresponding to glycolaldehyde, hydroxyacetone, methylglyoxal, and hydroxycarbonyls, were detected. The detailed time series and relative yields of identified and unidentified products aid in elucidating reaction pathways and structures for the unidentified products. Many of the unidentified products from these experiments were also observed within and above the canopy of a Ponderosa pine plantation, confirming that many products of terpene oxidation can be detected in ambient air using PTR-MS, and are indicative of concurrent SOA formation

    Response of the Aerodyne Aerosol Mass Spectrometer to Inorganic Sulfates and Organosulfur Compounds: Applications in Field and Laboratory Measurements

    Get PDF
    Organosulfur compounds are important components of secondary organic aerosols (SOA). While the Aerodyne high-resolution time-of-flight aerosol mass spectrometer (AMS) has been extensively used in aerosol studies, the response of the AMS to organosulfur compounds is not well-understood. Here, we investigated the fragmentation patterns of organosulfurs and inorganic sulfates in the AMS, developed a method to deconvolve total sulfate into components of inorganic and organic origins, and applied this method in both laboratory and field measurements. Apportionment results from laboratory isoprene photooxidation experiment showed that with inorganic sulfate seed, sulfate functionality of organic origins can contribute ∼7% of SOA mass at peak growth. Results from measurements in the Southeastern U.S. showed that 4% of measured sulfate is from organosulfur compounds. Methanesulfonic acid was estimated for measurements in the coastal and remote marine boundary layer. We explored the application of this method to unit mass-resolution data, where it performed less well due to interferences. Our apportionment results demonstrate that organosulfur compounds could be a non-negligible source of sulfate fragments in AMS laboratory and field data sets. A reevaluation of previous AMS measurements over the full range of atmospheric conditions using this method could provide a global estimate/constraint on the contribution of organosulfur compounds

    Contribution of First- versus Second-Generation Products to Secondary Organic Aerosols Formed in the Oxidation of Biogenic Hydrocarbons

    Get PDF
    Biogenic hydrocarbons emitted by vegetation are important contributors to secondary organic aerosol (SOA), but the aerosol formation mechanisms are incompletely understood. In this study, the formation of aerosols and gas-phase products from the ozonolysis and photooxidation of a series of biogenic hydrocarbons (isoprene, 8 monoterpenes, 4 sesquiterpenes, and 3 oxygenated terpenes) are examined. By comparing aerosol growth (measured by Differential Mobility Analyzers, DMAs) and gas-phase concentrations (monitored by a Proton Transfer Reaction Mass Spectrometer, PTR-MS), we study the general mechanisms of SOA formation. Aerosol growth data are presented in terms of a “growth curve”, a plot of aerosol mass formed versus the amount of hydrocarbon reacted. From the shapes of the growth curves, it is found that all the hydrocarbons studied can be classified into two groups based entirely on the number of double bonds of the hydrocarbon, regardless of the reaction systems (ozonolysis or photooxidation) and the types of hydrocarbons studied:  compounds with only one double bond and compounds with more than one double bond. For compounds with only one double bond, the first oxidation step is rate-limiting, and aerosols are formed mainly from low volatility first-generation oxidation products; whereas for compounds with more than one double bond, the second oxidation step may also be rate-limiting and second-generation products contribute substantially to SOA growth. This behavior is characterized by a vertical section in the growth curve, in which continued aerosol growth is observed even after all the parent hydrocarbon is consumed

    Effects of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the southeastern United States

    Get PDF
    Secondary organic aerosol (SOA) constitutes a substantial fraction of fine particulate matter and has important impacts on climate and human health. The extent to which human activities alter SOA formation from biogenic emissions in the atmosphere is largely undetermined. Here, we present direct observational evidence on the magnitude of anthropogenic influence on biogenic SOA formation based on comprehensive ambient measurements in the southeastern United States (US). Multiple high-time-resolution mass spectrometry organic aerosol measurements were made during different seasons at various locations, including urban and rural sites in the greater Atlanta area and Centreville in rural Alabama. Our results provide a quantitative understanding of the roles of anthropogenic SO(2) and NO(x) in ambient SOA formation. We show that isoprene-derived SOA is directly mediated by the abundance of sulfate, instead of the particle water content and/or particle acidity as suggested by prior laboratory studies. Anthropogenic NO(x) is shown to enhance nighttime SOA formation via nitrate radical oxidation of monoterpenes, resulting in the formation of condensable organic nitrates. Together, anthropogenic sulfate and NO(x) can mediate 43–70% of total measured organic aerosol (29–49% of submicron particulate matter, PM(1)) in the southeastern US during summer. These measurements imply that future reduction in SO(2) and NO(x) emissions can considerably reduce the SOA burden in the southeastern US. Updating current modeling frameworks with these observational constraints will also lead to more accurate treatment of aerosol formation for regions with substantial anthropogenic−biogenic interactions and consequently improve air quality and climate simulations

    Source apportionment of organic carbon in Centreville, AL using organosulfates in organic tracer-based positive matrix factorization

    Get PDF
    Organic tracer-based positive matrix factorization (PMF) was used to apportion fine particulate (PM_(2.5)) organic carbon (OC) to its sources in Centreville, AL, USA, a rural forested site influenced by anthropogenic emissions, during the Southern Oxidant and Aerosol Study (SOAS) in the summer of 2013. Model inputs included organosulfates, a group of organic compounds that are tracers of anthropogenically-influenced biogenic secondary organic aerosols (SOA), as well as, OC, elemental carbon, water-soluble organic carbon, and other organic tracers for primary and secondary sources measured during day and night. The organic tracer-based PMF resolved eight factors that were identified as biomass burning (11%, average contribution to PM_(2.5) OC), vehicle emissions (8%), isoprene SOC formed under low-NO_x conditions (13%), isoprene SOC formed under high-NO_x conditions (11%), SOC formed by photochemical reactions (9%), oxidatively aged biogenic SOC (6%), sulfuric acid-influenced SOC (21%, that also includes isoprene and monoterpene SOC), and monoterpene SOC formed under high-NO_x conditions (21%). These results indicate that OC in Centreville during summer is mainly secondary in origin (81%). Fossil fuel combustion is the major source of NO_x, ozone, and sulfuric acid that play a key role in SOA formation in the southeastern US. Fossil fuel was found to influence 61–76% of OC through vehicle emissions and SOA formation. Together with prescribed burns, which were the major type of biomass burning during this study, the OC influenced by anthropogenic activities reached 87%. The organic tracer-based PMF results were further compared with two complementary source apportionment techniques: PMF factors resolved for submicron organic aerosols measured using aerosol mass spectrometry (AMS) by Xu et al. (2015a) in Centreville during SOAS; biomass burning organic aerosols (BBOA, 11% of OC), isoprene-derived organic aerosols (isoprene-OA, 20% of OC), more-oxidized oxygenated organic aerosols (MO-OOA, 34% of OC), and less-oxidized oxygenated organic aerosols (LO-OOA, 35% of OC); and PM_(2.5) OC apportioned by chemical-mass balance model (CMB), considering the same chemical species as this study, save for organosulfates; biomass burning (5%), diesel engines (2%), gasoline smokers (3%), vegetative detritus (1%), isoprene SOC (23%) and monoterpene SOC (34%), and other (likely biogenic secondary) sources (33%). Overall, this study indicates the primary and secondary sources resolved by the organic tracer-based PMF are in good agreement with CMB and AMS-PMF results, while the organic tracer-based PMF provides additional insight to the SOC formation pathways through the inclusion of organosulfates and other organic tracers measured during day and night
    corecore