5 research outputs found

    New pulse shapes for enhanced spectral efficiency in digital radio communications

    Get PDF
    Linear modulation schemes such as phase shift keying (PSK) and quadrature amplitude modulation (QAM) are inherently spectrally efficient. This research seeks enhanced spectral efficiency by designing new spectrally efficient pulse shapes for such digital modulations. The pulses designed are of finite duration and exhibit zero intersymbol interference when received through an additive white Gaussian noise (AWGN) channel. It is shown that the resulting communications signals have optimal spectral roll-off while maintaining optimum bit error ratio performance when received via an AWGN channel. The bandwidths and power spectral densities of communications signals using these pulses are compared with traditional spectrally efficient communications signals.http://archive.org/details/newpulseshapesfo109453232Singapore Defence Science and Technology Agency author (civilian).Approved for public release; distribution is unlimited

    Multi-Objective Optimization and Network Routing with Near-Term Quantum Computers

    Full text link
    Multi-objective optimization is a ubiquitous problem that arises naturally in many scientific and industrial areas. Network routing optimization with multi-objective performance demands falls into this problem class, and finding good quality solutions at large scales is generally challenging. In this work, we develop a scheme with which near-term quantum computers can be applied to solve multi-objective combinatorial optimization problems. We study the application of this scheme to the network routing problem in detail, by first mapping it to the multi-objective shortest path problem. Focusing on an implementation based on the quantum approximate optimization algorithm (QAOA) -- the go-to approach for tackling optimization problems on near-term quantum computers -- we examine the Pareto plot that results from the scheme, and qualitatively analyze its ability to produce Pareto-optimal solutions. We further provide theoretical and numerical scaling analyses of the resource requirements and performance of QAOA, and identify key challenges associated with this approach. Finally, through Amazon Braket we execute small-scale implementations of our scheme on the IonQ Harmony 11-qubit quantum computer

    Evaluation of a quality improvement intervention to reduce anastomotic leak following right colectomy (EAGLE): pragmatic, batched stepped-wedge, cluster-randomized trial in 64 countries

    Get PDF
    Background Anastomotic leak affects 8 per cent of patients after right colectomy with a 10-fold increased risk of postoperative death. The EAGLE study aimed to develop and test whether an international, standardized quality improvement intervention could reduce anastomotic leaks. Methods The internationally intended protocol, iteratively co-developed by a multistage Delphi process, comprised an online educational module introducing risk stratification, an intraoperative checklist, and harmonized surgical techniques. Clusters (hospital teams) were randomized to one of three arms with varied sequences of intervention/data collection by a derived stepped-wedge batch design (at least 18 hospital teams per batch). Patients were blinded to the study allocation. Low- and middle-income country enrolment was encouraged. The primary outcome (assessed by intention to treat) was anastomotic leak rate, and subgroup analyses by module completion (at least 80 per cent of surgeons, high engagement; less than 50 per cent, low engagement) were preplanned. Results A total 355 hospital teams registered, with 332 from 64 countries (39.2 per cent low and middle income) included in the final analysis. The online modules were completed by half of the surgeons (2143 of 4411). The primary analysis included 3039 of the 3268 patients recruited (206 patients had no anastomosis and 23 were lost to follow-up), with anastomotic leaks arising before and after the intervention in 10.1 and 9.6 per cent respectively (adjusted OR 0.87, 95 per cent c.i. 0.59 to 1.30; P = 0.498). The proportion of surgeons completing the educational modules was an influence: the leak rate decreased from 12.2 per cent (61 of 500) before intervention to 5.1 per cent (24 of 473) after intervention in high-engagement centres (adjusted OR 0.36, 0.20 to 0.64; P < 0.001), but this was not observed in low-engagement hospitals (8.3 per cent (59 of 714) and 13.8 per cent (61 of 443) respectively; adjusted OR 2.09, 1.31 to 3.31). Conclusion Completion of globally available digital training by engaged teams can alter anastomotic leak rates. Registration number: NCT04270721 (http://www.clinicaltrials.gov)
    corecore