16,371 research outputs found

    A fuzzy k-modes algorithm for clustering categorical data

    Get PDF
    This correspondence describes extensions to the fuzzy k-means algorithm for clustering categorical data. By using a simple matching dissimilarity measure for categorical objects and modes instead of means for clusters, a new approach is developed, which allows the use of the k-means paradigm to efficiently cluster large categorical data sets. A fuzzy k-modes algorithm is presented and the effectiveness of the algorithm is demonstrated with experimental results.published_or_final_versio

    Testing Cluster Structure of Graphs

    Full text link
    We study the problem of recognizing the cluster structure of a graph in the framework of property testing in the bounded degree model. Given a parameter ε\varepsilon, a dd-bounded degree graph is defined to be (k,ϕ)(k, \phi)-clusterable, if it can be partitioned into no more than kk parts, such that the (inner) conductance of the induced subgraph on each part is at least ϕ\phi and the (outer) conductance of each part is at most cd,kε4ϕ2c_{d,k}\varepsilon^4\phi^2, where cd,kc_{d,k} depends only on d,kd,k. Our main result is a sublinear algorithm with the running time O~(npoly(ϕ,k,1/ε))\widetilde{O}(\sqrt{n}\cdot\mathrm{poly}(\phi,k,1/\varepsilon)) that takes as input a graph with maximum degree bounded by dd, parameters kk, ϕ\phi, ε\varepsilon, and with probability at least 23\frac23, accepts the graph if it is (k,ϕ)(k,\phi)-clusterable and rejects the graph if it is ε\varepsilon-far from (k,ϕ)(k, \phi^*)-clusterable for ϕ=cd,kϕ2ε4logn\phi^* = c'_{d,k}\frac{\phi^2 \varepsilon^4}{\log n}, where cd,kc'_{d,k} depends only on d,kd,k. By the lower bound of Ω(n)\Omega(\sqrt{n}) on the number of queries needed for testing graph expansion, which corresponds to k=1k=1 in our problem, our algorithm is asymptotically optimal up to polylogarithmic factors.Comment: Full version of STOC 201

    An ultrafast 1 x M all-optical WDM packet-switched router based on the PPM header address

    Get PDF
    This paper presents an all-optical 1 x M WDM router architecture for packet routing at multiple wavelengths simultaneously, with no wavelength conversion modules. The packet header address adopted is based on the pulse position modulation (PPM) format, thus enabling the use of only a singlebitwise optical AND gate for fast header address correlation. It offers multicast as well as broadcast capabilities. It is shown that a high speed packet routing at 160 Gb/s can be achieved with a low channel crosstalk (CXT) of ~ -27 dB at a channel spacing of greater than 0.4 THz and a demultiplexer bandwidth of 500 GHz

    Space-charge effects of the proposed high-intensity Fermilab booster

    Full text link
    Space-charge effects on beam stabilities are studied for the proposed two-ring high-intensity Fermilab booster destined for the muon collider. This includes microwave instabilities and rf potential-well distortions. For the first ring, ferrite insertion is suggested to cancel the space-charge distortion of the rf wave form. To control the inductance of the ferrite during ramping and to minimize resistive loss, perpendicular biasing to saturation is proposed

    Optimal multi-user MISO solution with application to multi-user orthogonal space division multiplexing

    Get PDF
    In this paper, we shall show that for a nT-element base station (BS) communicating with M(≤ nT) single-element mobile stations (MS) (or multi-user MISO) orthogonally in the spatial domain, the optimization problem is equivalent to the least squares (LS) problem for an underdetermined linear system. We then prove that the optimal BS antenna weights can be expressed as the pseudo-inverse of the multi-user channel matrix. This solution decomposes the multi-user system into many single-user systems with maximal resultant channel responses. The average of the squared channel response (defined as channel gain) and the inverse of the normalized variance of the squared channel response (defined as diversity order) are derived for performance analysis. It is found that every individual user of the resulting system behaves like a single-user system with nT-M+1 reception diversity. Finally, by applying the solution on a multi-user MIMO antenna system (i.e., with multiple antennas at the MS as well), an iterative approach is proposed to perform multi-user orthogonal space division multiplexing (OSDM) in the downlink.published_or_final_versio
    corecore