37,402 research outputs found
Field #3 of the Palomar-Groningen Survey II. Near-infrared photometry of semiregular variables
Near-infrared photometry (JHKL'M) was obtained for 78 semiregular variables
(SRVs) in field #3 of the Palomar-Groningen survey (PG3, l=0, b=-10). Together
with a sample of Miras in this field a comparison is made with a sample of
field SRVs and Miras. The PG3 SRVs form a sequence (period-luminosity
& period-colour) with the PG3 Miras, in which the SRVs are the short period
extension to the Miras. The field and PG3 Miras follow the same P/(J--K)o
relation, while this is not the case for the field and PG3 SRVs. Both the PG3
SRVs and Miras follow the SgrI period-luminosity relation adopted from Glass et
al. (1995, MNRAS 273, 383). They are likely pulsating in the fundamental mode
and have metallicities spanning the range from intermediate to approximately
solar.Comment: 14 pages LaTeX (2 tables, 8 figures), to appear in A&A 338 (1998);
minor modifications in tex
Idealized Slab Plasma approach for the study of Warm Dense Matter
Recently, warm dense matter (WDM) has emerged as an interdisciplinary field
that draws increasing interest in plasma physics, condensed matter physics,
high pressure science, astrophysics, inertial confinement fusion, as well as
materials science under extreme conditions. To allow the study of well-defined
WDM states, we have introduced the concept of idealized-slab plasmas that can
be realized in the laboratory via (i) the isochoric heating of a solid and (ii)
the propagation of a shock wave in a solid. The application of this concept
provides new means for probing the dynamic conductivity, equation of state,
ionization and opacity. These approaches are presented here using results
derived from first-principles (density-functional type) theory, Thomas-Fermi
type theory, and numerical simulations.Comment: 37 pages, 21 figures, available, pdf file only. To appear in: Laser
and Particle beams. To appear more or less in this form in Laser and Particle
beam
Edge states in Open Antiferromagnetic Heisenberg Chains
In this letter we report our results in investigating edge effects of open
antiferromagnetic Heisenberg spin chains with spin magnitudes
using the density-matrix renormalization group (DMRG) method initiated by
White. For integer spin chains, we find that edge states with spin magnitude
exist, in agreement with Valence-Bond-Solid model picture. For
half-integer spin chains, we find that no edge states exist for spin
chain, but edge state exists in spin chain with , in
agreement with previous conjecture by Ng. Strong finite size effects associated
with spin dimmerization in half-integer spin chains will also be discussed.Comment: 4 pages, RevTeX 3.0, 5 figures in a separate uuencoded postscript
file. Replaced once to enlarge the acknowlegement
Nonlocal effects in thin 4H-SiC UV avalanche photodiodes
The avalanche multiplication and excess noise characteristics of 4H-SiC avalanche photodiodes with i-region widths of 0.105 and 0.285 mum have been investigated using 230-365-nm light, while the responsivities of the photodiodes at unity gain were examined for wavelengths up to 375 nm. Peak unity gain responsivities of more than 130 mA/W at 265 nm, equivalent to quantum efficiencies of more than 60%, were obtained for both structures. The measured avalanche characteristics show, that beta > alpha and that the beta/alpha ratio remains large even in thin 4H-SiC avalanche regions. Very low excess noise, corresponding to k(eff) < 0.15 in the local noise model, where k(eff) = alpha/beta(beta/alpha) for hole (electron) injection, was measured with 365-nm light in both structures. Modeling the experimental results using a simple quantum efficiency model and a nonlocal description yields effective ionization threshold energies of 12 and 8 eV for electrons and holes, respectively, and suggests that the dead space in 4H-SiC is soft. Although dead space is important, pure hole injection is still required to ensure low excess noise in thin 4H-SiC APDs owing to beta/alpha ratios that remain large, even at very high fields
Photonic Clusters
We show through rigorous calculations that dielectric microspheres can be
organized by an incident electromagnetic plane wave into stable cluster
configurations, which we call photonic molecules. The long-range optical
binding force arises from multiple scattering between the spheres. A photonic
molecule can exhibit a multiplicity of distinct geometries, including
quasicrystal-like configurations, with exotic dynamics. Linear stability
analysis and dynamical simulations show that the equilibrium configurations can
correspond with either stable or a type of quasi-stable states exhibiting
periodic particle motion in the presence of frictional dissipation.Comment: 4 pages, 3 figure
Charged black holes in Vaidya backgrounds: Hawking's Radiation
In this paper we propose a class of embedded solutions of Einstein's field
equations describing non-rotating Reissner-Nordstrom-Vaidya and rotating
Kerr-Newman-Vaidya black holes.Comment: 30 pages, latex file, no figure
An ultrafast 1 x M all-optical WDM packet-switched router based on the PPM header address
This paper presents an all-optical 1 x M WDM router architecture for packet routing at multiple wavelengths simultaneously, with no wavelength conversion modules. The packet header address adopted is based on the pulse position modulation (PPM) format, thus enabling the use of only a singlebitwise optical AND gate for fast header address correlation. It offers multicast as well as broadcast capabilities. It is shown that a high speed packet routing at 160 Gb/s can be achieved with a low channel crosstalk (CXT) of ~ -27 dB at a channel spacing of greater than 0.4 THz and a demultiplexer bandwidth of 500 GHz
Bogoliubov transformations and exact isolated solutions for simple non-adiabatic Hamiltonians
We present a new method for finding isolated exact solutions of a class of
non-adiabatic Hamiltonians of relevance to quantum optics and allied areas.
Central to our approach is the use of Bogoliubov transformations of the bosonic
fields in the models. We demonstrate the simplicity and efficiency of this
method by applying it to the Rabi Hamiltonian.Comment: LaTeX, 16 pages, 1 figure. Minor additions and journal re
An efficient minimum-distance decoding algorithm for convolutional error-correcting codes
Minimum-distance decoding of convolutional codes has generally been considered impractical for other than relatively short constraint length codes, because of the exponential growth in complexity with increasing constraint length. The minimum-distance decoding algorithm proposed in the paper, however, uses a sequential decoding approach to avoid an exponential growth in complexity with increasing constraint length, and also utilises the distance and structural properties of convolutional codes to considerably reduce the amount of tree searching needed to find the minimum-distance path. In this way the algorithm achieves a complexity that does not grow exponentially with increasing constraint length, and is efficient for both long and short constraint length codes. The algorithm consists of two main processes. Firstly, a direct-mapping scheme, which automatically finds the minimum-distance path in a single mapping operation, is used to eliminate the need for all short back-up tree searches. Secondly, when a longer back-up search is required, an efficient tree-searching scheme is used to minimise the required search effort. The paper describes the complete algorithm and its theoretical basis, and examples of its operation are given
- …