26,728 research outputs found
Steady-state entanglement in a double-well Bose-Einstein condensate through coupling to a superconducting resonator
We consider a two-component Bose-Einstein condensate in a double-well
potential, where the atoms are magnetically coupled to a single-mode of the
microwave field inside a superconducting resonator. We find that the system has
the different dark-state subspaces in the strong- and weak-tunneling regimes,
respectively. In the limit of weak tunnel coupling, steady-state entanglement
between the two spatially separated condensates can be generated by evolving to
a mixture of dark states via the dissipation of the photon field. We show that
the entanglement can be faithfully indicated by an entanglement witness.
Long-lived entangled states are useful for quantum information processing with
atom-chip devices.Comment: 9 pages, 7 figures, minor revisio
Non Singular Origin of the Universe and the Cosmological Constant Problem (CCP)
We consider a non singular origin for the Universe starting from an Einstein
static Universe in the framework of a theory which uses two volume elements
and , where is a metric independent
density, also curvature, curvature square terms, first order formalism and for
scale invariance a dilaton field are considered in the action. In the
Einstein frame we also add a cosmological term that parametrizes the zero point
fluctuations. The resulting effective potential for the dilaton contains two
flat regions, for relevant for the non singular
origin of the Universe and , describing our present
Universe. Surprisingly, avoidance of singularities and stability as imply a positive but small vacuum energy as . Zero vacuum energy density for the present universe is
the "threshold" for universe creation.Comment: awarded an honorable mention in the Gravity Research Foundation 2011
Awards for Essays in Gravitation for 201
Coherent control of atomic spin currents in a double well
We propose an experimental feasible method for controlling the atomic
currents of a two-component Bose-Einstein condensate in a double well by
applying an external field to the atoms in one of the potential wells. We study
the ground-state properties of the system and show that the directions of spin
currents and net-particle tunneling can be manipulated by adiabatically varying
the coupling strength between the atoms and the field. This system can be used
for studying spin and tunneling phenomena across a wide range of interaction
parameters. In addition, spin-squeezed states can be generated. It is useful
for quantum information processing and quantum metrology.Comment: 6 pages, 7 figures, minor revisio
Edge states in Open Antiferromagnetic Heisenberg Chains
In this letter we report our results in investigating edge effects of open
antiferromagnetic Heisenberg spin chains with spin magnitudes
using the density-matrix renormalization group (DMRG) method initiated by
White. For integer spin chains, we find that edge states with spin magnitude
exist, in agreement with Valence-Bond-Solid model picture. For
half-integer spin chains, we find that no edge states exist for spin
chain, but edge state exists in spin chain with , in
agreement with previous conjecture by Ng. Strong finite size effects associated
with spin dimmerization in half-integer spin chains will also be discussed.Comment: 4 pages, RevTeX 3.0, 5 figures in a separate uuencoded postscript
file. Replaced once to enlarge the acknowlegement
Information and Particle Physics
Information measures for relativistic quantum spinors are constructed to
satisfy various postulated properties such as normalisation invariance and
positivity. Those measures are then used to motivate generalised Lagrangians
meant to probe shorter distance physics within the maximum uncertainty
framework. The modified evolution equations that follow are necessarily
nonlinear and simultaneously violate Lorentz invariance, supporting previous
heuristic arguments linking quantum nonlinearity with Lorentz violation. The
nonlinear equations also break discrete symmetries. We discuss the implications
of our results for physics in the neutrino sector and cosmology
The Minimal Length and Large Extra Dimensions
Planck scale physics represents a future challenge, located between particle
physics and general relativity. The Planck scale marks a threshold beyond which
the old description of spacetime breaks down and conceptually new phenomena
must appear. Little is known about the fundamental theory valid at Planckian
energies, except that it necessarily seems to imply the occurrence of a minimal
length scale, providing a natural ultraviolet cutoff and a limit to the
possible resolution of spacetime.
Motivated by String Theory, the models of large extra dimensions lower the
Planck scale to values soon accessible. These models predict a vast number of
quantum gravity effects at the lowered Planck scale, among them the production
of TeV-mass black holes and gravitons. Within the extra dimensional scenario,
also the minimal length comes into the reach of experiment and sets a
fundamental limit to short distance physics.
We review the status of Planck scale physics in these effective models.Comment: 18 pages, 5 figures, brief review to appear in Mod. Phys. Let.
Response of finite spin-S Heisenberg chains to local perturbations
We consider the properties of finite isotropic antiferromagnetic Heisenberg
chains with S=1/2, 1, 3/2 spins when a weak magnetic field is applied on a few
sites, using White's density matrix renormalization group (DMRG) method. For
the S=1 chain there exists only one length scale in the system which determines
the behavior of the one- and two-point correlation functions both around the
local perturbation and near the free boundary. For the critical,
half-odd-integer spin cases the exponent of the spin-spin correlation function
was found to be , and the exponent of the decay of the site
magnetization around the perturbed site is . Close to a free
boundary, however, the behavior is completely different for S=1/2 and .Comment: 13 pages, 7 figure
Finite size spectrum, magnon interactions and magnetization of S=1 Heisenberg spin chains
We report our density matrix renormalization-group and analytical work on S=1
antiferromagnetic Heisenberg spin chains. We study the finite size behavior
within the framework of the non-linear sigma model. We study the effect of
magnon-magnon interactions on the finite size spectrum and on the magnetization
curve close to the critical magnetic field, determine the magnon scattering
length and compare it to the prediction from the non-linear model.Comment: 28 pages, 8 figures, made substantial improvement
- …