26,728 research outputs found

    Steady-state entanglement in a double-well Bose-Einstein condensate through coupling to a superconducting resonator

    Get PDF
    We consider a two-component Bose-Einstein condensate in a double-well potential, where the atoms are magnetically coupled to a single-mode of the microwave field inside a superconducting resonator. We find that the system has the different dark-state subspaces in the strong- and weak-tunneling regimes, respectively. In the limit of weak tunnel coupling, steady-state entanglement between the two spatially separated condensates can be generated by evolving to a mixture of dark states via the dissipation of the photon field. We show that the entanglement can be faithfully indicated by an entanglement witness. Long-lived entangled states are useful for quantum information processing with atom-chip devices.Comment: 9 pages, 7 figures, minor revisio

    Non Singular Origin of the Universe and the Cosmological Constant Problem (CCP)

    Full text link
    We consider a non singular origin for the Universe starting from an Einstein static Universe in the framework of a theory which uses two volume elements gd4x\sqrt{-{g}}d^{4}x and Φd4x\Phi d^{4}x, where Φ\Phi is a metric independent density, also curvature, curvature square terms, first order formalism and for scale invariance a dilaton field ϕ\phi are considered in the action. In the Einstein frame we also add a cosmological term that parametrizes the zero point fluctuations. The resulting effective potential for the dilaton contains two flat regions, for ϕ\phi \rightarrow \infty relevant for the non singular origin of the Universe and ϕ\phi \rightarrow -\infty, describing our present Universe. Surprisingly, avoidance of singularities and stability as ϕ\phi \rightarrow \infty imply a positive but small vacuum energy as ϕ\phi \rightarrow -\infty. Zero vacuum energy density for the present universe is the "threshold" for universe creation.Comment: awarded an honorable mention in the Gravity Research Foundation 2011 Awards for Essays in Gravitation for 201

    Coherent control of atomic spin currents in a double well

    Get PDF
    We propose an experimental feasible method for controlling the atomic currents of a two-component Bose-Einstein condensate in a double well by applying an external field to the atoms in one of the potential wells. We study the ground-state properties of the system and show that the directions of spin currents and net-particle tunneling can be manipulated by adiabatically varying the coupling strength between the atoms and the field. This system can be used for studying spin and tunneling phenomena across a wide range of interaction parameters. In addition, spin-squeezed states can be generated. It is useful for quantum information processing and quantum metrology.Comment: 6 pages, 7 figures, minor revisio

    Post emergency laparotomy pneumonia: The size of the problem

    Get PDF

    Edge states in Open Antiferromagnetic Heisenberg Chains

    Full text link
    In this letter we report our results in investigating edge effects of open antiferromagnetic Heisenberg spin chains with spin magnitudes S=1/2,1,3/2,2S=1/2, 1,3/2,2 using the density-matrix renormalization group (DMRG) method initiated by White. For integer spin chains, we find that edge states with spin magnitude Sedge=S/2S_{edge}=S/2 exist, in agreement with Valence-Bond-Solid model picture. For half-integer spin chains, we find that no edge states exist for S=1/2S=1/2 spin chain, but edge state exists in S=3/2S=3/2 spin chain with Sedge=1/2S_{edge}=1/2, in agreement with previous conjecture by Ng. Strong finite size effects associated with spin dimmerization in half-integer spin chains will also be discussed.Comment: 4 pages, RevTeX 3.0, 5 figures in a separate uuencoded postscript file. Replaced once to enlarge the acknowlegement

    Information and Particle Physics

    Full text link
    Information measures for relativistic quantum spinors are constructed to satisfy various postulated properties such as normalisation invariance and positivity. Those measures are then used to motivate generalised Lagrangians meant to probe shorter distance physics within the maximum uncertainty framework. The modified evolution equations that follow are necessarily nonlinear and simultaneously violate Lorentz invariance, supporting previous heuristic arguments linking quantum nonlinearity with Lorentz violation. The nonlinear equations also break discrete symmetries. We discuss the implications of our results for physics in the neutrino sector and cosmology

    The Minimal Length and Large Extra Dimensions

    Full text link
    Planck scale physics represents a future challenge, located between particle physics and general relativity. The Planck scale marks a threshold beyond which the old description of spacetime breaks down and conceptually new phenomena must appear. Little is known about the fundamental theory valid at Planckian energies, except that it necessarily seems to imply the occurrence of a minimal length scale, providing a natural ultraviolet cutoff and a limit to the possible resolution of spacetime. Motivated by String Theory, the models of large extra dimensions lower the Planck scale to values soon accessible. These models predict a vast number of quantum gravity effects at the lowered Planck scale, among them the production of TeV-mass black holes and gravitons. Within the extra dimensional scenario, also the minimal length comes into the reach of experiment and sets a fundamental limit to short distance physics. We review the status of Planck scale physics in these effective models.Comment: 18 pages, 5 figures, brief review to appear in Mod. Phys. Let.

    Response of finite spin-S Heisenberg chains to local perturbations

    Full text link
    We consider the properties of finite isotropic antiferromagnetic Heisenberg chains with S=1/2, 1, 3/2 spins when a weak magnetic field is applied on a few sites, using White's density matrix renormalization group (DMRG) method. For the S=1 chain there exists only one length scale in the system which determines the behavior of the one- and two-point correlation functions both around the local perturbation and near the free boundary. For the critical, half-odd-integer spin cases the exponent of the spin-spin correlation function was found to be η=1\eta=1, and the exponent of the decay of the site magnetization around the perturbed site is xm=η/2x_m =\eta /2 . Close to a free boundary, however, the behavior is completely different for S=1/2 and S>1/2S > 1/2.Comment: 13 pages, 7 figure

    Finite size spectrum, magnon interactions and magnetization of S=1 Heisenberg spin chains

    Full text link
    We report our density matrix renormalization-group and analytical work on S=1 antiferromagnetic Heisenberg spin chains. We study the finite size behavior within the framework of the non-linear sigma model. We study the effect of magnon-magnon interactions on the finite size spectrum and on the magnetization curve close to the critical magnetic field, determine the magnon scattering length and compare it to the prediction from the non-linear σ\sigma model.Comment: 28 pages, 8 figures, made substantial improvement
    corecore