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Steady-state entanglement in a double-well Bose-Einstein condensate through coupling to a
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We consider a two-component Bose-Einstein condensate in a double-well potential, where the atoms are
magnetically coupled to a single mode of the microwave field inside a superconducting resonator. We find that
the system has different dark-state subspaces in the strong- and weak-tunneling regimes. In the limit of weak
tunnel coupling, steady-state entanglement between the two spatially separated condensates can be generated by
evolving to a mixture of dark states via the dissipation of the photon field. We show that the entanglement can be
faithfully indicated by an entanglement witness. Long-lived entangled states are useful for quantum-information

processing with atom-chip devices.
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I. INTRODUCTION

Recently, the realization of a Bose-Einstein condensate
(BEC) strongly coupled to the quantized photon field in an
optical cavity has been shown [1,2]. This paves the way to
studying the interplay of atomic interactions and atom-photon
interactions. For example, the novel quantum phase transition
of a condensate coupled to a cavity has been demonstrated
[3]. Strong atom-photon coupling is useful for quantum
communications [4] such as the light-matter interface [1,2].

Alternatively, strong coupling of ultracold atoms to a
superconducting resonator has been recently proposed [5].
The two long-lived hyperfine states |e) = |F =2,mp = 1)
and |g) = |F = 1,mp = —1) of 3Rb [6] are considered to
be magnetically coupled to the microwave field via their
magnetic dipoles [5,7]. Since the high-Q superconducting
resonator can be fabricated to a small mode volume [8] and the
coupling strength can be greatly increased due to the collective
enhancement [4], the strong coupling of ultracold atoms in the
microwave regime can be achieved [5].

In this paper, we study a two-component BEC in a double-
well potential [9], where all atoms are equally coupled to a
single mode of the microwave field inside a superconducting
resonator. Two weakly linked condensates can be created in
a magnetic double-well potential on an atom chip [10,11] or
in an optical double-well potential [12]. In fact, the tunneling
dynamics between the atoms in two wells has been recently
observed [13-15]. A double-well BEC coupled to an optical
cavity has also been discussed in the literature [16—18].
However, the spontaneous emission rate of excited states used
for optical transitions in experiments [ 1,2] is much higher than
the tunneling rate of the atoms between the two wells [13-15].
Here we consider the two hyperfine states |e) and |g) of
87Rb with the transition frequency 27 x 6.8 GHz [6]. The
coherence times [19,20] of these hyperfine spin states (|e) and
|g)) are much longer than both the time scales of tunneling
and atom-photon interactions. Therefore, this system offers
possibilities for the study of how the tunnel couplings between
the two spatially separated condensates affect the atom-photon
dynamics.

We focus our investigation on the the system in the limits
of the strong and weak tunnel couplings. We find that the
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system has different dark-state subspaces [21] in these two
tunneling regimes. In the weak-tunneling regime, the system
has a family of dark states which can be used for producing
quantum entanglement between the condensates. Here we
propose to efficiently generate steady-state entanglement
between the two spatially separated condensates by evolving
to a mixture of dark states through the dissipation of the
photon field [22-24]. Note that our scheme does not require
any adjustment of the tunneling strength. It is different
from other methods [9] which depend on the strength of
tunnel couplings to generate entanglement. In addition, the
entanglement generated between the two condensates can be
used for the implementation of quantum state transfer [25].
This may be useful for quantum-information processing with
atom-chip devices [20].

This paper is organized as follows. In Sec. II, we introduce
the system of a two-component condensate in a double-
well potential, and the two-level atoms are coupled to a
superconducting resonator. In Sec. III, we derive the two
effective Hamiltonians in the strong- and weak-tunneling
regimes. In Sec. IV, we investigate the dark-state subspaces
and the atom-photon dynamics in the two tunneling limits.
In Sec. V, we provide a method to produce the steady-state
entanglement between the two condensates in a double well.
A summary is given in Sec. VI. In the Appendix, we discuss
the validity of the effective Hamiltonian in the strong-tunneling
regime.

II. SYSTEM

We consider a two-component BEC being trapped in a
double-well potential [9], and the condensate is placed near
the surface of a superconducting resonator as shown in Fig. 1.
The atoms, with two internal states |e) and |g), are coupled to
a single mode of the photon field via their magnetic dipoles.

A. Two-component condensate trapped in a
double-well potential

We first introduce the system of a two-component conden-
sate in a one-dimensional (1D) double-well potential which
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FIG. 1. (Color online) Schematic of a two-component BEC
coupled to a single-mode of the photon field inside a superconducting
resonator. A two-component condensate is trapped in a double-well
potential, and it is placed close to the surface of the superconducting
resonator. The atoms are coupled to the magnetic field via their
magnetic dipoles. The parameters L and w are the length and width
of the superconducting resonator, respectively.

can be described by the Hamiltonian as

n? 92
Hy=Y [ dxWi(x) - —— +V,
o a/ x a(x)|: . a2 T pw ()

+ an;(xmu)]wa(x)

+2Ueg/dij(x)w§(x)xpg(x)\lfe(x), (1)

where W, (x) is the field operator of the atoms for the internal
state |«) at the position x, and the indices o = g,e represent
the ground and the excited states, respectively. Here m,, is
the mass of the atom in the state |«) and Vpw(x) is the 1D
double-well potential which is given by [11]

L\
Vow(x) = Vd[l - (—) ] , ()
X0

where V; is the barrier height and x is the distance between
the two separate potential wells. The atoms are transversely
confined in the y and z directions with the trap frequencies w .
The size of the ground-state wave function in the transverse
motion is a; = +/h/mqw; [26,27], where m, and m, are
nearly equal. Since the transverse frequencies are much larger
than the trap frequency in the x direction, the transverse
motions of the atoms are frozen out. The parameters U, and
U, are the effective 1D interaction strengths between the
inter-, and the intracomponent condensates, as [26,27]

g, = P (1 c L )1 3)
Y mead V2a, ’
- 4n’memga, e \
Ueg=$ga§(l—c Tes ) R
(me_’_mg)al ﬁal

where C ~ 1.4603. The parameters a, and a,, are the three-
dimensional s-wave scattering lengths for the inter-, and the
intracomponent condensates.

We adopt the two-mode approximation [28] such that the
field operator W,(x) can be expanded in terms of the two
localized mode functions ug, (x) and uy,(x) as

W, (x) = apuer(x) + aggr(x), )
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where «;, and oy are the annihilator operators of the atoms in
the state o« = e, g for the left and right modes of the double-well
potential, respectively. The Hamiltonian of the system [9],
within the two-mode approximation, can be written as

Hj = hEe(ezeL + e;eR) +hEg(g12gR + gIgL)
—hJu(e) er + eher) — My (g} g + gher)
FhUl(e) er) + (eher)’] + iUyl (g} 81)?
+(gkgr)*1 + 2nUcy(e) ergh g1 + ekerghgr). (6)

where

1 . n? 92
Ba = [ty o] = 5o 4 Vow) ug). )

1 . n* o9
Jy = — /druaL(x)[ -t VDW(X):|MaR(X), ®)

2mgy 0x2
Uy,
Vo= 2 / it ()1, ©)
U,
Uy = =2 / dr gy (O lug; (O, (10)

and j = L,R. The positive parameters E, and J, [29]
are the ground-state frequencies of the localized mode
oy r, and the tunneling strengths between the two wells for
the atoms in the states . Here U,, and U,z are the two positive
parameters which describe the inter- and intracomponent
interaction strengths, respectively.

B. Atoms coupled to the photon field in a microwave cavity

We consider that the atoms are coupled to a single mode of
the photon field via their magnetic dipoles [5]. Within the two-
mode approximation, the Hamiltonian, describing the system
of cavity field, the atoms, and their interactions, is given by

H, = hwaata + ha)o(eTLeL + e;eR)
+hglale) g, + ehgr) + Heel, (11)

where w, and a are the frequency and the annihilator operator
of the single mode of the photon field, and wy is the transition
frequency of the two internal states. Here we have assumed that
the wavelength of the microwave field (~1 cm) is much larger
than the size of the condensate (~10 pm) [10,11]. Therefore,
all atoms are coupled to the photon field with the same coupling
strength g = ug/1ow,/2hV [7], where pp is the Bohr
magneton, i is the vacuum permeability, and V is the volume
of the superconducting resonator. The coupling strength g
can attain 1 kHz [7] if the volume V of the superconducting
resonator is taken as L x w X f; ~ 1 cm x 10 um x 200 nm
[7,8], where L is the length, w is the width, and #;, is the
thickness of the superconducting resonator.

III. EFFECTIVE HAMILTONIANS IN STRONG- AND
WEAK-TUNNELING REGIMES: LOW ATOMIC
EXCITATIONS

We will derive the effective Hamiltonians of the system in
the limits of strong and weak tunnel couplings, where a few
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atomic excitations are only involved. Let us first write the total
Hamiltonian of the system as

H = ha)aafa + ha)o(eTLeL + e}eR) — hJe(eTLeR + e}eL)
—hJy(gh gk + gkgL) +hUel(efer) + (eher)]
+hUgl(g] 81)% + (ghgr)’] + 2nUcy(elerg) g1
+eherghgr) +hglale)gr + epgr) +Hel.  (12)

The total number of atoms N is conserved. We have omitted
the constant term EgN for a symmetric double well, where
E, ~ Ej for the two masses m, and m, being equal. It is
convenient to work in the rotating frame by applying the
unitary transformation to the Hamiltonian H in Eq. (12), where
the unitary operator U(¢) is

U(t) = exp [—ia)a(aTa + eieL + e;eR)t]. (13)
The transformed Hamiltonian becomes
H = hA(eTLeL + eEeR) — th(eZeR + eEeL)
— Ny} gk + 8hgr) +MUecl(eher)? + (cher)’]
+HUql(8).81)° + (85 8r)] + 2Ug(cler g} g1
+ehergker) +hglalel g1 + ehgr) + Hel, (14)

where A = wy — w, is the detuning between the frequencies
of the photon field and the two internal states.

In the strong-tunneling regime, the tunnel coupling is dom-
inant and the strength of atom-atom interactions is relatively
weak. On the contrary, in the weak-tunneling regime, the
atom-atom interactions become dominant and the tunneling
strength is negligible. We will show that these two cases exhibit
the different behaviors in the atom-photon dynamics. We will
provide derivations of the two effective Hamiltonians in the
two tunneling limits in the following sections.

A. Strong-tunneling regime

In the limit of the strong tunnel coupling, the tunneling
strengths are much larger than the strengths of the atom-atom
interactions, i.e., J,, Jg>>U,,U,,U,,. The total Hamiltonian of
the system can be approximated as

H) = hA(e)er + eher) —Tido(e}ex + eher)

—th(gIgR + g}gL) + hg[a(eEgL + e}gR) +H.c.].
(15)

We have neglected the terms of the atom-atom interactions in
this Hamiltonian.

The symmetric and asymmetric modes g+ and e+ can be
related to the localized modes as

1

g:l: \/_2(gL:|:gR)’ (16)
ey = e; +ep). /

The Hamiltonian is then transformed as
H|=h(A — J)el e, +h(A+T)ele. —TiJ,(ghgi—g g )
+hglael gy +He) +hglae g +H.c.). (18)
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Here the atoms are in symmetric (asymmetric) mode if they are
populated in the states gﬁ|0)Jr or e’jr|0)+ (gX10)_ or €k ]0)_),
where |0); (]J0)_) is the vacuum state of the symmetric
(asymmetric) mode and k is a non-negative integer.

We consider the system to be initially prepared in the ground
state in the limit of strong tunnel coupling, i.e., the ground state
of the symmetric mode. The ground state can be obtained by
applying the operator (gi)N to the vacuum state |0) of the
symmetric mode, i.e.,

1
Vo

where N is the total number of atoms. Note that the atoms
in the symmetric and asymmetric modes are independently
coupled to the photon field in Eq. (18). Therefore, all atoms
in the symmetric mode are only involved in the dynamics of
the atom-photon interactions if the system starts with the state
|W1(0)) in Eq. (19). In fact, there are only a few excitations in
the asymmetric mode due to the atomic interactions. The effect
of the excitations from the asymmetric mode to the dynamics of
atom-photon interactions is very small. It is because the Rabi
coupling strength cannot be greatly enhanced with a small
number of atoms in the asymmetric mode. We briefly discuss
the validity of this assumption in the Appendix.

It is instructive to express the Hamiltonian in terms of
angular momentum operators:

1W,(0)) = eV 10)+, (19)

SV =grel, (20)
S =e. gl Q1)
S = Leler — gl g (22)
The Hamiltonian can be rewritten as
A =hAS™ +ngaSt” + He). (23)

For simplicity, we have assumed that the tunneling strengths
J. and J, are equal. We also have omitted the constant term
ANA/2.

By applying the Holstein-Primakoff transformation (HPT)
[30], the angular momentum operators can be mapped onto
the harmonic oscillators which are given by

S = bV N - btb, (24)
S = by/N — bib, (25)

N
S = bl — > (26)

In the low degree of excitation, the mean excitation number
(b'h) is much smaller than the total number of atoms N.
The angular momentum operators can be approximated by
the bosonic operators [9,31]. The effective Hamiltonian can
be obtained as

HS =nAb'b +hgV/N(ab! + H.e.). 27)

Note that the effective Rabi frequency is enhanced by a factor
of +/N. This effective Hamiltonian Héflf) in Eq. (27) describes
the interaction between the collective-excitation mode and the
single mode of the photon field.
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B. Weak-tunneling regime

Now we investigate the system in the weak-tunneling
regime, where the atom-atom interaction strengths are much
larger than the tunneling strengths, i, U,,Ug,Uee> U, J,.
In this limit, we assume that the tunneling between the two
condensates is effectively turned off. The total Hamiltonian
can be approximated as

H, = hA(ezeL + eLeR) + hg[a(eIgL + eLgR) + H.c.]
FhU,[(e} e1)? + (eher)?] + hUgl(gh g0 + (ghgr)]
20U () erg) g1 + ehergher). (28)

Here we have ignored the terms of the tunnel couplings.
This Hamiltonian can be expressed in terms of the angular
momentum operators:

St = gjel. (29)
Sj- = ejgl, (30)
Sj. = Yele; — glg)). 31)

where j = L,R. Now the Hamiltonian is rewritten as

Hy=h Y (A+8)S;. +hg@S;, +He)+hxS, (32)

Jj=L.R

where § = (U, — Ugg)N/2 and x = U, + Uy — 2U,,. We
have omitted the constant term i(U,, + Uy + 2U.q)N?/16 +
ANA/2in Eq. (32).

We consider all atoms at the state |g) are initially prepared
in the ground state of the Hamiltonian in Eq. (32), which can
be described by a product of two number states as

|W2(0)) = [N/2)g,IN/2) gy (33)

Without loss of generality, we assume that N is an even
number.

We apply the HPT such that the angular momentum
operators can be mapped onto the harmonic oscillators as

Si+=cVN/2—cte,Si_ =c/NJ/2—cte,  (34)

N

SLz = CTC - Zy (35)

Sgr =d'V/N/2 —dtd,Sg_ =d\/N/2 —dtd, (36)
N

Sk, =d'd — T (37

If the mean numbers of the atomic excitations, (cfc) and (d'd),
are much smaller than the number of atoms N /2 in each well,
then the Hamiltonian can be approximated [9,31] as

H? Z hay(cle +dld) +hey Mate! +dhy + H
etf = Ay g 2[0(0 +d")+H.c.]

+hxl(c'e)? + @la), (38)

where A,, = 2A 4+ § — x N/2. The effective Rabi frequency
is enhanced by a factor of /N/2. The parameter x is
much smaller than the effective Rabi frequency because the
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scattering lengths of the inter- and intracomponent condensates
of 8’Rb are very similar [6]. We will ignore the terms with the
parameter y in Eq. (38) in our later discussion.

The effective Hamiltonian Héé) in Eq. (38) describes the
interactions between the single mode of the photon field and
the two modes of the collective excitations of the atoms in
the left and right potential wells, respectively. This system
can be described by a system of three coupled harmonic
oscillators. The effective Rabi frequency for each atomic mode
is proportional to the factor /N /2. This is different from
the effective Rabi frequency, in the strong-tunneling regime,
which is proportional to the factor /N .

IV. DARK STATES AND QUANTUM DYNAMICS OF
THE SYSTEM

We now study dark states of the system which has dif-
ferent dark-state subspaces in the strong- and weak-tunneling
regimes. Let us first introduce the definition of dark states. Dark
states [21] are the eigenstates of the atom-photon interaction
operator V), with zero eigenvalues, i.e.,

V|dark) = O|dark) = 0. 39)

Dark states, in the strong- and weak-tunneling regimes, in this
system can be obtained as

HJ|D); =0, (40)

where Hé{f) are the two effective Hamiltonians in Eqgs. (27)
and (38) with zero detunings (A = A, =0)and j = 1,2.

In the limit of strong tunnel coupling, the dark state | D) is
the product state of the vacuum state of the photon field and
the ground state of the atomic mode b, which is given by

|D)1 = 10)4]0)p- (41)

This state is the ground state of the coupled system of the
atoms and the photon field.

In the weak-tunneling regime, the system has a family of
dark states. The family of dark states are

[Dy)2 = |O>a|Df,): (42)
where
DY) =272 (=1 [Cn = j)ljda (43)
j=0

and C" is the binomial coefficient. The dark states |D,), are
the product state of the vacuum state |0), of the photon field
and the states |D;') are the eigenstates of the operator ¢ + d
with zero eigenvalues. Note that the states | D) in Eq. (43) are
a superposition of the states |[n — j).|j)4s which have the same
degree of atomic excitations.

To gain more insight into dark states, let us first investigate
the atom-photon dynamics subject to the dissipation of the
photon field. A superconducting resonator with the frequency
~40 GHz can be cooled down to low temperatures (~25 mK)
[32]. This allows us to consider the cavity field being weakly
coupled to the reservoir at zero temperature [33]. Note that
the relaxation time (several us) of the single photon inside the
superconducting resonator is much shorter than the coherence
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FIG. 2. (Color online) Time evolution of the mean photon
number (a) and the mean atomic excitations (b) with the damping
rate k = 100g and the detuning A = 0. The different number of
atoms N are 5 x 10° (black solid line), 1 x 10* (blue dashed line),
and 2 x 10* (red dotted line).

time (~1s) of the cold atoms [19,20]. The effect of the
dissipation of the atoms caused by the noise of the surface of
the superconductor is negligible [34]. The main source of the
dissipation is the damping of the photon field. The dynamics
of the system can be described by the master equation, for zero
temperature, as [33,35]

co_ L) K t_ ot t

pj = _};l[Heff i1+ 5(261,01‘61 —a'apj —pja‘a), (44)

where p; is the density matrix of the total system, and j =
1,2. Obviously, the dark states |D); and |D,), are the steady-
state solutions of the master equation in Eq. (44). Thus, the
dark states are robust against the dissipation of the photon
field. In the strong-tunneling regime, the steady state is the
dark state | D);. In the weak-tunneling regime, the state of the
condensates evolves as a mixture of dark states | D, ), through
the dissipation of the photon field.

Now we study the dynamics of the system in the strong-
tunneling regime, where the state is prepared as |0),|1),, and
[1), is a number state. We plot the time of evolution of the
mean photon number and mean atomic-excitation number in
Fig. 2. The mean photon number and mean atomic excitations
undergo a few oscillations and then both of them decay to zero.
We also see that the faster rate of oscillations can be obtained
if a larger number of atoms N are used.

We proceed to investigate the atom-photon dynamics in the
weak-tunneling regime. The system is initially prepared as the
state |0),|1).|0)4, where |1), is a number state. In Fig. 3, we
plot the mean photon number, and the mean excitation numbers
of the two atomic modes versus time. When the atom-photon
interactions are turned on, the excitation number of the atomic
mode ¢ decreases while the mean photon number increases
as shown in Fig. 3. Afterward, the mean excitation number
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FIG. 3. (Color online) Dynamics of the mean photon number and
mean atomic excitation numbers with the damping rate k = 100g and
the detuning A,, = 0. (a) Mean photon number (a'a) as a function of
the time gr. Time evolution of the mean atomic excitation numbers
of the atomic mode ¢, in (b), and the atomic mode d, in (c). The
different number of atoms N are 5 x 10° (black solid line), 1 x 10*
(blue dashed line) and 2 x 10* (red dotted line).

of the atomic mode d starts to increase. This means that the
energy of the atomic mode c transfers to the photon field and
the atomic mode d absorbs the energy from the photon field.
In this way, the two atomic modes exchange the energy via the
photon field. The faster rate of exchanging energy between the
atoms and the photon field can be attained if a larger number
of atoms N are used. We also note that the mean photon
number in Fig. 3(a) is about half of the mean photon number
in Fig. 2(a). It is because the atoms in the atomic mode d, in the
weak-tunneling regime, absorbs the energy from the photon
field.

In Fig. 3(a), the mean photon number decays to zero after
a period of time. However, the mean excitation numbers of
modes ¢ and d remain nonzero as shown in Figs. 3(b) and
3(c), because the state of the atoms evolves to a mixture of
dark states | D), and |D;),, and a single excitation is shared
by the atoms in the dark state | Dy ),. This results in the nonzero
excitation numbers of the two atomic modes.

V. GENERATION OF ENTANGLEMENT BETWEEN TWO
SPATIALLY SEPARATED CONDENSATES

We have shown that the system has different dark-state
subspaces in the two tunneling limits. Now we study the
entanglement between the condensates in the two different
potential wells in the weak-tunneling regime. In this regime,
the system has a family of dark states which can be used
for generating entanglement. Here we consider the tunneling
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FIG. 4. (Color online) Time evolution of the entanglement
witness in (a) and logarithmic negativity in (b), for the damping
rate k = 100g and the detuning A, = 0. The different number of
atoms N are 5 x 10° (black solid line), 1 x 10* (blue dashed line),
and 2 x 10* (red dotted line).

between the wells to be effectively turned off. Therefore,
the two independent condensates in the two potential wells
are initially unentangled. We will show that steady-state
entanglement between the two condensates can be produced
by evolving to a mixture of dark states {|D,),} through the
dissipation of the photon field [22-24].

To study the quantum entanglement between the two atomic
modes ¢ and d, it is necessary to obtain the density matrix of
the atomic condensate. By tracing out the system of the photon
field, we can obtain the density matrix p.q,

Ped = Tru(p)a (45)

where p is the density matrix of the total system. Let us first
examine the entanglement of a single dark state |D,),. For a
dark state | D, ), in Eq. (42), the density matrix p.4 is given by

pea = | Dy)(D;

where | D;) is the state in Eq. (43). The degree of entanglement
between the two atomic modes can be quantified by the von
Neumann entropy. It is defined as

; (46)

Ep = =Tr(p: In p), 47)

where p. = Try(p.q) is the reduced density matrix. The von
Neumann entropy is

Ep=-27"% Cim|27"C}]. (48)
j=0

Thus, the state | D;}) is an entangled state. The degree of two-
mode entanglement becomes higher for larger n.

In general, this density matrix p.; is a mixed state. To
quantify the entanglement of a mixed state, logarithmic
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FIG. 5. (Color online) Dynamics of entanglement. (a) Entangle-
ment witness WV and (b) logarithmic negativity E(o.,) as a function
of time g¢. The initial state |0),|n).|0); with the different excitation
numbers n are shown for n = 1 (black solid line), n = 2 (blue dashed
line), and n = 3 (red dotted line). The parameters are x = 100g,
A, =0,and N = 5x10°.

negativity can be used [36]. The definition of logarithmic
negativity is [36]

En(pea) = log, ||pk], (49)

where ,0}_:; is the partial transpose of the density matrix p., and
| - || is the trace norm.

However, logarithmic negativity is difficult to be experi-
mentally determined. It is very useful to study an experimen-
tally accessible quantity to detect the quantum entanglement
between the two bosonic modes [37]. If an inequality

{cdV)* > (ncna), (50)

is satisfied [37], then the state is an entangled state. Here
n. = cfcand ny = d'd are the number operators of the atomic
modes c and d, respectively. For convenience, this quantity WV
is defined as

W = (n.ng) — |{cd") . (51)

If W is negative, then the state is nonseparable. This quantity
W is called an entanglement witness [38].

We investigate the dynamics of entanglement between
the two atomic modes. We consider an initial state as a
product state of the three modes, i.e., |0),]|1).|0)y, where
|1). is a number state. We plot the entanglement witness
and logarithmic negativity versus time as shown in Fig. 4.
This figure shows that the entanglement witness decreases
and logarithmic negativity increases with a similar rate, and
then they saturate after a short time. This shows that the
steady-state entanglement can be produced in a short time
via the dissipative photon field. The entanglement can also be
produced faster if a larger number of atoms are used. Besides,
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we can see that the entanglement witness is consistent with the
logarithmic negativity to indicate the degree of entanglement.
The entanglement witness is a faithful indicator for detecting
entanglement between the two bosonic modes.

Next, we study the generation of entanglement by using
an initial state |0),|n).|0), with a higher degree of excitation,
where |n). is a number state and n is larger than unity. In
Fig. 5, the entanglement witness and logarithmic negativity
are plotted versus time. It shows that a higher degree of
entanglement can be obtained if higher excitation numbers
n = 2,3 are used.

VI. SUMMARY

We have studied a two-component condensate in a double-
well potential, where the atoms are magnetically coupled to
a single mode of the photon field inside a superconducting
resonator. The system has different dark-state subspaces in
the strong- and weak-tunneling regimes, , and it gives rise to
different dynamics of atomic excitations in the two regimes.
Steady-state entanglement between the two spatially separated
condensates can be produced by evolving to a mixture of dark

PHYSICAL REVIEW A 84, 023629 (2011)

states through the dissipative photon field. We have shown that
entanglement can be faithfully indicated by an entanglement
witness.
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APPENDIX : VALIDITY OF THE EFFECTIVE
HAMILTONIAN IN THE STRONG-TUNNELING REGIME

In this appendix, we examine the validity of the ef-
fective Hamiltonian He(flf) in Eq. (27) in the limit of
strong tunnel coupling. We express the Hamiltonian in
term of the symmetric-mode and asymmetric-mode operators
as

H=hA—-J)e e, +h(A+ J)el e —Tid(gleg, —glg )+ngael g, +Hec)+Tiglae g_

h Uee

H.c.
+H.c) + >

+gT_g+)2] + U [(eie+ +ele)gher +8lg ) +(ehes +elegle + gT_g+)]-

Let us define

Fr=glg, F=glg,
Fy=1(glg- —glgo). (A2)

The commutation relations [F3,Fy] = £F1 and [F;,F_] =

2F, are satisfied. The operators F and F,, and S(i+) and Sg”
in Eqgs. (20) to (22) generate an su(3) algebra [39]. In the limit
of large N, we can apply the HPT to the operators:

F*=fIYN = fIf.F~ = fVN - fif.
Fy=flf—Nj2. (A3)

hU )
[(ehes +ele ) +(ehe +elen)]+ =% [(glgs + 815 + (sle-

(AL)

Assuming that the mean excitation number (T f) is much
smaller than N, we can approximate the operators as [39]

fl= Pt f =

VN JN

In the low-degree-of-excitation regime, the approximated
Hamiltonian can be written as

H ~ hw,ata + ho'b'b + g/ N@ab' + Hee) + H.  (A5)

(A4)

The Hamiltonian H’ contains the terms of the operators
in the asymmetric mode and the terms from the nonlinear
interactions, and the constant terms are omitted, which can be
written as

5 hU N \
H =nl fif+ %(ﬁ + 2 4+R(A+ L) el —el e ) +hglael g +Hc.)

hU,,
2

+

FhU[(eheyr +ele )ghas + g g )+ vVNele +el e+ 1]

, hU,
[(eLeJr +ele )+ (eie_ + eT_e+)2] + ng(gig+ +glg)?

(A6)
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FIG. 6. (Color online) Level scheme of the atoms in the double-
well potential. In the strong-tunneling regime, the atoms, with the
two states |e,) and |gy), in the symmetric mode are coupled to the
cavity field. The two ground states of the symmetric and asymmetric
modes (|g4) and |g_)) are coupled to each other via the atom-atom
interactions.

Here we consider the number of atoms in the excited states to
be very small. We also assume that the strength of the Rabi
coupling g is weak compared to the tunneling strength J, and
nonlinear strength Ug, N, but g is much stronger than Uee, Uyg,,
and U,,. Therefore, the Hamiltonian H' can be approximated

by the Hamiltonian H"” as

V=hafTf AR+ ), (AT)
where
A = Jg + UgN, (A8)
U, N

From Eq. (A7), nonlinear interactions can give rise to the
transitions of the atoms in the symmetric mode to the atoms
in the asymmetric mode, and vice versa. The level scheme
is shown in Fig. 6. Note that this Hamiltonian H” is exactly
solvable. The time-evolution operator can be factorized as [35]

PHYSICAL REVIEW A 84, 023629 (2011)

FIG. 7. (Color online) Expectation value (T f) as a function of
the time J,¢. Different strengths of U,, N are shown: U, N = J, (red
solid line), U, N = 5J, (blue dashed line), and U,, N = 10J, (black
dotted line).

Ao — 22, sinh 8 (A13)
>~ 2BcoshB — A sinh B’
)\'/2
B="- %7 (A14)
= —2ikt, Ny = —2ikyt. (A15)

We then apply the time-evolution operator S(f) to the
vacuum state |0) » of the mode f. The state becomes

o0 2 | n
W, (1)) = Z ( ”) (-) 2n);.  (Al6)
The mean excitation number (f1 f) is
2n
|A1/4|2Zn(2”)'1\ (A17)

22n 1(,,;)2

In Fig. 7, we plot the expectation value ( f1 f) versus the time,
for the different strengths of atomic interaction Ug,N. It is
shown that there are only a few excitations in the asymmetric
mode even if the atomic-interaction strength U,, N is much
larger than the tunneling strength J,. Therefore, the Rabi
coupling strength cannot be greatly increased due to the
collective enhancement.

S(t) = exp(—i H"t/n), (A10)
A In(A;)
= exp (ff”) exp [—1(fo + ff*)}
A
X exp (72f2>, (Al1)
where
A -2

A= <cosh,3 — ﬁsinhﬂ) , (A12)
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