2,443 research outputs found

    WIJAM: a mobile collaborative improvisation platform under Master-players Paradigm

    Get PDF
    Music jamming is an extremely difficult task for musical novices. Trying to extend this meaningful and highly enjoyable activity to a larger recipient group, we present WIJAM, a mobile application for an ad-hoc group of musical novices to perform improvisation along with a music master. In this master-players' paradigm, the master offers a music backing, orchestrates the musical flow, and gives feedbacks to the players; the players improvise by tapping and sketching on their smartphones. We argue that this paradigm can be a significant contribution to the possibility of music playing by a group of novices with no instrumental training leading to decent musical results.published_or_final_versio

    Genome-wide loss-of-function analysis of deubiquitylating enzymes for zebrafish development

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Deconjugation of ubiquitin and/or ubiquitin-like modified protein substrates is essential to modulate protein-protein interactions and, thus, signaling processes in cells. Although deubiquitylating (deubiquitinating) enzymes (DUBs) play a key role in this process, however, their function and regulation remain insufficiently understood. The "loss-of-function" phenotype studies can provide important information to elucidate the gene function, and zebrafish is an excellent model for this goal.</p> <p>Results</p> <p>From an <it>in silico </it>genome-wide search, we found more than 90 putative DUBs encoded in the zebrafish genome belonging to six different subclasses. Out of them, 85 from five classical subclasses have been tested with morpholino (MO) knockdown experiments and 57 of them were found to be important in early development of zebrafish. These DUB morphants resulted in a complex and pleiotropic phenotype that, regardless of gene target, always affected the notochord. Based on the <it>huC </it>neuronal marker expression, we grouped them into five sets (groups I to V). Group I DUBs (<it>otud7b, uchl3 </it>and <it>bap1</it>) appear to be involved in the Notch signaling pathway based on the neuronal hyperplasia, while group IV DUBs (<it>otud4, usp5, usp15 </it>and <it>usp25</it>) play a critical role in dorsoventral patterning through the BMP pathway.</p> <p>Conclusion</p> <p>We have identified an exhaustive list of genes in the zebrafish genome belonging to the five established classes of DUBs. Additionally, we performed the corresponding MO knockdown experiments in zebrafish as well as functional studies for a subset of the predicted DUB genes. The screen results in this work will stimulate functional follow-up studies of potential DUB genes using the zebrafish model system.</p

    Numerical Simulations of Constant-Volume Spray Combustion of n-Heptane with Chemical Kinetics

    Get PDF
    Objectives: A reduced toluene reference fuel (TRF) mechanism of multi-component nature from the literature is utilized to simulate constant-volume spray combustion of n-heptane. The approach allows a preliminary assessment of fuel kinetic model and computational fluid dynamics (CFD) formulations in a simplified computational domain before integrating them in complex engine simulations. Methods: The operating conditions vary in ambient densities between 14.8 kg/m3 and 30 kg/m3 with initial oxygen concentrations ranging from 10% to 21%. The CFD models are first calibrated to replicate spray penetration lengths of the non-reacting condition. The tuned numerical models are then applied to simulate the combustion and soot formation events of reacting sprays. The soot model employed is the multi-step Moss-Brookes model with updated oxidation models. Findings: The relative errors for ignition delay and lift-off length predictions are within 35% and 22% respectively. Furthermore, simulated soot volume fraction contours agree qualitatively with the experimental soot clouds. Computed peak soot locations, however, are found to be further downstream axially as compared to the experimental results across all test cases. Application: Good agreement with experimental spatial soot distributions allows the incorporation of both fuel and soot models in engine configurations

    Angiotensin II type 1 receptor-dependent oxidative stress mediates endothelial dysfunction in type 2 diabetic mice

    Get PDF
    The mechanisms underlying the effect of the renin-angiotensin-aldosterone system (RAAS) inhibition on endothelial dysfunction in type 2 diabetes are incompletely understood. This study explored a causal relationship between RAAS activation and oxidative stress involved in diabetes-associated endothelial dysfunction. Daily oral administration of valsartan or enalapril at 10mg/kg/day to db/db mice for 6 weeks reversed the blunted acetylcholine-induced endothelium-dependent dilatations, suppressed the upregulated expression of angiotensin II type 1 receptor (AT1R) and NAD(P)H oxidase subunits (p22phox and p47phox), and reduced reactive oxygen species (ROS) production. Acute exposure to AT1R blocker losartan restored the impaired endothelium-dependent dilatations in aortas of db/db mice and also in renal arteries of diabetic patients (fasting plasma glucose level ≥7.0 mmol/l). Similar observations were also made with apocynin, diphenyliodonium, or tempol treatment in db/db mouse aortas. DHE fluorescence revealed an overproduction of ROS in db/db aortas which was sensitive to inhibition by losartan or ROS scavengers. Losartan also prevented the impairment of endothelium-dependent dilatations under hyperglycemic conditions that were accompanied by high ROS production. The present study has identified an initiative role of AT1R activation in mediating endothelial dysfunction of arteries from db/db mice and diabetic patients. © 2010 Mary Ann Liebert, Inc.published_or_final_versio

    Optimally combining dynamical decoupling and quantum error correction

    Full text link
    We show how dynamical decoupling (DD) and quantum error correction (QEC) can be optimally combined in the setting of fault tolerant quantum computing. To this end we identify the optimal generator set of DD sequences designed to protect quantum information encoded into stabilizer subspace or subsystem codes. This generator set, comprising the stabilizers and logical operators of the code, minimizes a natural cost function associated with the length of DD sequences. We prove that with the optimal generator set the restrictive local-bath assumption used in earlier work on hybrid DD-QEC schemes, can be significantly relaxed, thus bringing hybrid DD-QEC schemes, and their potentially considerable advantages, closer to realization.Comment: 6 pages, 1 figur

    Notch signaling and ghost cell fate in the calcifying cystig odontogenic tumor

    Get PDF
    Notch signaling is an evolutionarily conserved mechanism that enables adjacent cells to adopt different fates. Ghost cells (GCs) are anucleate cells with homogeneous pale eosinophilic cytoplasm and very pale to clear central areas (previous nucleus sites). Although GCs are present in a variety of odontogenic lesions notably the calcifying cystic odontogenic tumor (GCOT), their nature and process of formation remains elusive. The aim of this study was to investigate the role of Notch signaling in the cell fate specification of GCs in CCOT. Immunohistochemical staining for four Notch receptors (Notch1, Notch2, Notch3 and Notch4) and three ligands (Jagged1, Jagged2 and Delta1) was performed on archival tissues of five CCOT cases. Level of positivity was quantified as negative (0), mild (+), moderate (2+) and strong (3+). Results revealed that GCs demonstrated overexpression for Notch1 and Jagged1 suggesting that Notch1Jagged1 signaling might serve as the main transduction mechanism in cell fate decision for GCs in CCOT. Protein localizations were largely membranous and/or cytoplasmic. Mineralized GCs also stained positive implicating that the calcification process might be associated with upregulation of these molecules. The other Notch receptors and ligands were weak to absent in GCs and tumoral epithelium. Stromal endothelium and fibroblasts were stained variably positive

    Sleep Disordered Breathing, Obesity and Atrial Fibrillation: A Mendelian Randomisation Study.

    Get PDF
    Funder: National Institute for Health Research (NIHR)It remains unclear whether the association between obstructive sleep apnoea (OSA), a form of sleep-disordered breathing (SDB), and atrial fibrillation (AF) is causal or mediated by shared co-morbidities such as obesity. Existing observational studies are conflicting and limited by confounding and reverse causality. We performed Mendelian randomisation (MR) to investigate the causal relationships between SDB, body mass index (BMI) and AF. Single-nucleotide polymorphisms associated with SDB (n = 29) and BMI (n = 453) were selected as instrumental variables to investigate the effects of SDB and BMI on AF, using genetic association data on 55,114 AF cases and 482,295 controls. Primary analysis was conducted using inverse-variance weighted MR. Higher genetically predicted SDB and BMI were associated with increased risk of AF (OR per log OR increase in snoring liability 2.09 (95% CI 1.10-3.98), p = 0.03; OR per 1-SD increase in BMI 1.33 (95% CI 1.24-1.42), p < 0.001). The association between SDB and AF was not observed in sensitivity analyses, whilst associations between BMI and AF remained consistent. Similarly, in multivariable MR, SDB was not associated with AF after adjusting for BMI (OR 0.68 (95% CI 0.42-1.10), p = 0.12). Higher BMI remained associated with increased risk of AF after adjusting for OSA (OR 1.40 (95% CI 1.30-1.51), p < 0.001). Elevated BMI appears causal for AF, independent of SDB. Our data suggest that the association between SDB, in general, and AF is attributable to mediation or confounding from obesity, though we cannot exclude that more severe SDB phenotypes (i.e., OSA) are causal for AF

    Ameliorating effect of Erxian decoction combined with Fructus Schisandrae chinensis (Wu Wei Zi) on menopausal sweating and serum hormone profiles in a rat model.

    Get PDF
    Background Modified Erxian decoction (MEXD), i.e., Erxian decoction (EXD) with Fructus Schisandrae chinensis (Wu Wei Zi) added, has been used to alleviate menopausal symptoms. This study aimed to investigate the effects of MEXD on menopausal sweating and serum hormone levels in a rat model of menopause after oral administration of MEXD. Methods Quality control of MEXD was conducted by employing a reversed-phase high performance liquid chromatography column. The three treatment groups received oral administration of MEXD in 0.5% sodium carboxylmethyl cellulose (CMC-Na) at three different doses (5.5, 11, and 22 g/kg body weight) once-daily for 6 consecutive weeks, with 10 animals per group. Huangqijing oral liquor (5 mL/kg) prepared from the roots of Huang qi (Astragalus membranaceus) with an antiperspirant effect was used as a positive control. The negative control group received the same volume of vehicle (0.5% CMC-Na). Ten 3-month-old Sprague–Dawley rats were used as a young group for comparison with the treatment groups (12–14 months old rats). Blood was collected from all animals after 3–6 weeks of treatment. At the end of the treatment, the uterine weight, ovarian weight, and body weight were recorded. Serum malondialdehyde contents and superoxide dismutase activities were determined by thiobarbituric acid colorimetric assays and chemoluminescence assays, respectively. Serum levels of estradiol, follicle-stimulating hormone, and luteinizing hormone were measured by radioimmunoassays. Rat foot pad assays were used to determine the antiperspirant activity of MEXD and histological examinations were conducted on plantar sweat glands. Results Treatment with MEXD (11 g/kg) significantly inhibited sweat excretion in the menopause model rats after treatment for 3 (P = 0.0026) and 6 (P < 0.0001) weeks. The decoction markedly decreased the number of secretory cells in plantar sweat glands. In addition, MEXD (11 g/kg) significantly increased the serum estradiol levels (P < 0.001) and superoxide dismutase activities (P = 0.0405). Furthermore, MEXD (11 g/kg) markedly decreased the serum levels of follicle-stimulating hormone (P = 0.001), luteinizing hormone (P = 0.0213), and malondialdehyde (P = 0.01). Conclusion Modified Erxian decoction significantly inhibited sweat excretion, regulated serum levels of pituitary gonadotropins and estradiol, and exhibited antioxidative effects in a rat model of menopause.published_or_final_versio
    corecore