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Abstract: It remains unclear whether the association between obstructive sleep apnoea (OSA), a form
of sleep-disordered breathing (SDB), and atrial fibrillation (AF) is causal or mediated by shared co-
morbidities such as obesity. Existing observational studies are conflicting and limited by confounding
and reverse causality. We performed Mendelian randomisation (MR) to investigate the causal
relationships between SDB, body mass index (BMI) and AF. Single-nucleotide polymorphisms
associated with SDB (n = 29) and BMI (n = 453) were selected as instrumental variables to investigate
the effects of SDB and BMI on AF, using genetic association data on 55,114 AF cases and 482,295
controls. Primary analysis was conducted using inverse-variance weighted MR. Higher genetically
predicted SDB and BMI were associated with increased risk of AF (OR per log OR increase in snoring
liability 2.09 (95% CI 1.10–3.98), p = 0.03; OR per 1-SD increase in BMI 1.33 (95% CI 1.24–1.42),
p < 0.001). The association between SDB and AF was not observed in sensitivity analyses, whilst
associations between BMI and AF remained consistent. Similarly, in multivariable MR, SDB was
not associated with AF after adjusting for BMI (OR 0.68 (95% CI 0.42–1.10), p = 0.12). Higher BMI
remained associated with increased risk of AF after adjusting for OSA (OR 1.40 (95% CI 1.30–1.51),
p < 0.001). Elevated BMI appears causal for AF, independent of SDB. Our data suggest that the
association between SDB, in general, and AF is attributable to mediation or confounding from obesity,
though we cannot exclude that more severe SDB phenotypes (i.e., OSA) are causal for AF.

Keywords: atrial fibrillation; sleep-disordered breathing; obstructive sleep apnoea; obesity;
Mendelian randomization

1. Introduction

Current clinical guidelines support an integrated approach to atrial fibrillation (AF)
management, encompassing anticoagulation, symptom management and risk factor opti-
misation, with recent focus on obesity and obstructive sleep apnoea (OSA) as two reversible
risk factors [1]. Sleep-disordered breathing (SDB) is a general term describing difficulties in
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breathing during sleep ranging from snoring to OSA, which is increasing in prevalence [2,3].
OSA is the most common form of SDB in the general population, characterised by hypop-
noeic and apnoeic collapses of the upper airway during sleep despite ongoing respiratory
effort [2]. Based on several observational studies showing an association between OSA with
higher rates of AF [4–6] and observational meta-analysis associating continuous positive
airway pressure (CPAP) treatment with reductions in AF recurrence [7], previous clinical
guidelines for AF contained a Class IIa recommendation that OSA treatment should be
optimised to reduce AF recurrence and improve treatment [1].

However, more recent clinical guidelines have downgraded that recommendation
in favour of a Class IIb recommendation that OSA management may be considered to
reduce AF incidence, progression, recurrence and symptoms [1]. This reflects a subsequent
appreciation of the uncertainty in the evidence base due to the dearth of randomised
controlled trial (RCT) evidence and the lack of consensus from observational data. Some
large observational studies have failed to demonstrate an association between OSA and AF
that is independent of other cardiovascular risk factors [8,9]. Furthermore, the presence of
OSA, and its treatment with CPAP, have recently been shown not to impact arrhythmia
outcomes following ablation [10,11] or cardioversion [10]. Early and small RCTs have
shown no impact of CPAP on time to AF recurrence post-cardioversion [12] or differences
in AF burden or quality of life [13].

Complicating interpretation of the data on SDB/OSA and AF is the strong association
of both SDB/OSA and AF with obesity, which may act as a confounder. Obesity has been
shown to be associated with AF [14], with the effects thought to be mediated in part by
electrotonic and paracrine effects of epicardial fat [15]. Obesity and SDB are also closely
related, whereby obesity both predisposes to, and potentiates SDB [16,17], and developing
SDB is associated with subsequent weight gain [18]. With currently available retrospective
observational data, it is difficult to determine whether the relationship between SDB/OSA
and AF is mediated or confounded through obesity and raised body mass index (BMI), or
whether OSA causes AF directly through independent pathways.

Mendelian randomisation (MR) utilises genetic variants in instrumental variable
analysis to investigate relationships between modifiable risk factors and outcomes using
observational data [19]. Leveraging genetic variants that are independently and randomly
inherited as proxies for modifiable exposures allows for causal inference concerning out-
comes. In this way, MR can potentially overcome limitations associated with classical
observational epidemiology, namely confounding and reverse causality [19], and may per-
mit delineation of complex pathways relating SDB, BMI and AF. A recent univariable MR
study reported a causal association between five single-nucleotide polymorphisms (SNPs)
associated with OSA and AF [20]. However, some of the employed OSA instruments were
also associated with BMI or whole-body, fat-free mass at the genome-wide significance
level, raising the question of whether this relationship was partially mediated via obesity.
We therefore applied the multivariable MR paradigm to investigate the relationship be-
tween genetically predicted SDB and BMI on AF, and to explore the presence of genetic
evidence supporting a direct causal effect of SDB in the development of AF independent of
BMI.

2. Materials and Methods
2.1. Ethical Approval, Data Availability and Reporting

All data used for this study are publicly available and their original studies are cited.
All these studies obtained relevant participant consent and ethical approval. The paper is
reported on the basis of recommendations by The Strengthening the Reporting of Observa-
tional Studies in Epidemiology-Mendelian randomization (STROBE-MR) guidelines [21].

2.2. Data Sources

For the primary analyses, genetic association estimates for BMI were obtained from the
Genetic Investigation of Anthropometric Traits (GIANT) consortium summary statistics [22]
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on patients of European ancestry. Genetic association estimates for snoring obtained from
the GWAS performed by Campos et al. [23] on European ancestry individuals were used
as a proxy for SDB in general. The trait with the highest genetic correlation with snoring
was sleep apnoea (rG = 0.78, SE = 0.17, p-value = 3 × 10−5 (LDSC χ2-test)). These analyses
suggest that the SNPs for snoring studied are an appropriate and robust surrogate for
genetically proxied SDB, and, henceforth, we will refer to the snoring exposure as SDB.
Genetic association estimates for AF were obtained from the GWAS by Roselli et al. [24] on
55,114 cases and 482,295 European controls. Summaries of population characteristics for
each of these studies are available in the original publications.

2.3. Instrumental Variable Selection

To estimate the effect of genetically predicted probable SDB and BMI, respectively, on
AF, SNPs were selected if they had been associated with snoring or BMI in the respective
data source studies at genome-wide significance (p < 5 × 10−8). Furthermore, SNPs were
selected if they were in pair-wise linkage disequilibrium (LD) with r2 0.001. Clumping was
performed using the TwoSample MR package in R [25]. This resulted in 29 genome-wide
significant SNPs for SDB and 453 genome-wide significant SNPs for BMI.

2.4. Statistical Power

Statistical power calculations for MR analyses were conducted using the online tool
“mRnd calculator” [26] to estimate the minimum effects that we had at least 80% power to
detect.

2.5. Statistical Analysis

The flowchart for the statistical analysis plan is displayed in Figure 1. Inverse-variance
weighted (IVW) MR with multiplicative random effects was used as the primary analysis
method [27]. The IVW MR approach assumes that genetic instruments for each risk factor
satisfy the instrumental variable assumptions, which include the assumption that the
instrumental variables are not associated with confounder traits of the association between
the risk factor and the outcome of AF, and that the instrumental variables are only associated
with AF through their association with the risk factor. The situation where, rather than
acting solely through the genetically predicted risk factor of interest, genetic variants
have effects on multiple risk factors influencing multiple parallel biological pathways
and subsequent phenotypes is termed horizontal pleiotropy and constitutes an important
potential violation of the instrumental variable assumptions [19].

To attempt to correct for any potential violations of the assumptions, we used MR-
Egger regression [28], weighted median MR [29] and MR-PRESSO [30] as sensitivity analy-
ses. We opted for these three analyses as they operate in different ways and rely on different
assumptions for valid inferences to assess the reliability of MR analyses [31–33].

To investigate an effect of SDB on AF that is not mediated by BMI (and vice versa),
summary data multivariable MR was performed. In this analysis, the variant-outcome
genetic association estimates are regressed on the variant-exposure and variant-mediator
estimates, weighted for the precision of the variant-outcome association, and with the
intercept fixed to zero.

All analyses were performed using the MendelianRandomization [34] and TwoSample
MR package in R version 4.0.4 [25]. M.A. had full access to all data in the study and takes
responsibility for its integrity and data analysis.

3. Results
3.1. Statistical Power

The univariable MR analysis for BMI and AF had at least 80% power to detect AF ORs
lower than 0.97 and higher than 1.04 per 1-SD kg/m2 increase in BMI. The univariable MR
analysis for SDB and AF had at least 80% power to detect AF ORs lower than 0.97 and
higher than 1.03 per log OR increase in genetically predicted OSA.
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Figure 1. Data acquisition and statistical analysis flowchart.

3.2. MR: SDB and AF

In IVW MR analysis, higher genetically predicted SDB was associated with increased
risk of AF, OR 2.09 (95% CI 1.10–3.98, p = 0.03) per log OR increase in snoring liability. There
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was no significant evidence of pleiotropy (MR-Egger intercept 0.02, standard error (SE) 0.01,
p = 0.20), but the significant association was no longer observed in MR-Egger (OR 0.24, 95%
CI 0.01–6.53, p = 0.40), weighted median MR (OR 1.40, 95% CI 0.72–2.70, p = 0.32) analyses
or MR-PRESSO (OR 1.85, 95% CI 1.00–3.41, p = 0.06, three SNPs excluded).

In multivariable MR analysis, genetically predicted SDB was not associated with AF
after adjusting for genetically predicted BMI (OR 0.68, 95% CI 0.42–1.10, p = 0.12). The
results are summarised in Figures 2 and 3, with complete results displayed in Table S1.
SNP MR estimates in the analysis of SDB and AF are displayed in Table S2.
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Figure 2. Mendelian randomisation (MR) results for the association of sleep-disordered breathing
(SDB) and body mass index (BMI) with atrial fibrillation (AF). When SDB is the exposure (units of log
odds ratio snoring liability), multivariable MR analysis adjusts for genetically predicted BMI. When
BMI is the exposure (units of kg/m2), multivariable MR analysis adjusts for genetically predicted SDB.
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Figure 3. Mendelian randomisation (MR) scatter plot of genetic associations between sleep-disordered
breathing (SDB) and atrial fibrillation (AF). The genetic association and corresponding 95% confidence
interval (CI) for each instrumented single-nucleotide polymorphism (n = 29) with SDB (x-axis, units
of log odds ratio snoring liability) and AF (y-axis, units of log odds ratio atrial fibrillation liability)
are plotted. The gradient of each line represents the MR estimate for the corresponding model.

3.3. MR: BMI and AF

There was consistent evidence of an association between genetically predicted BMI and
AF across the IVW, MR-Egger and weighted median MR analyses. For each 1-SD kg/m2

increase in genetically predicted BMI, the MR IVW estimate identified increased risk of
AF, OR 1.33 (95% CI 1.24–1.42, p < 0.001). There was no evidence of pleiotropy (MR-
Egger intercept −2 × 10−3, SE 1 × 10−3, p = 0.14), and the association estimate remained
consistent in MR-Egger (OR 1.52, 95% CI 1.26–1.83, p < 0.001), weighted median MR (OR
1.36, 95% CI 1.26–1.47, p < 0.001) and MR-PRESSO (OR 1.34, 95% CI 1.26–1.42, p < 0.001,
10 SNPs excluded) sensitivity analyses.

Multivariable MR identified an association between genetically predicted BMI and AF
even after adjusting for genetically predicted SDB (OR 1.40, 95% CI 1.30–1.51, p < 0.001).
The results are summarised in Figures 2 and 4, with complete results displayed in Table S1.
SNP MR estimates in the analysis of BMI and AF are displayed in Table S3.

4. Discussion

In this study, we leveraged genetic data to investigate the complex relationship be-
tween SDB, BMI and AF in a two-sample MR study. In univariable MR analysis, genetically
predicted SDB was associated with increased risk of AF, though this relationship was lost in
sensitivity analyses more robust to the presence of pleiotropic and outlying variants. Using
multivariable MR analysis adjusting for genetically predicted BMI, our results suggest SDB,
in general, is unlikely to be causally related to the development of AF through pathways,
independent of BMI. The role of BMI in mediating the relationship between SDB and AF is
highlighted by the IVW MR effect estimate becoming non-significant following inclusion
of BMI in the multivariable MR model. We also show that BMI is likely to be causally
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related to AF, independent of SDB, even when accounting for pleiotropic or outlier SNPs.
Taken together, these results suggest that BMI is a modifiable risk factor for AF while the
association between SDB, in general, and AF is likely to be attributable to mediation or
confounding from BMI.
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Figure 4. Mendelian randomisation (MR) scatter plot of genetic associations between body mass
index (BMI) and atrial fibrillation (AF). The genetic association and corresponding 95% confidence
interval (CI) for each instrumented single-nucleotide polymorphism (n = 453) with BMI (x-axis, units
of kg/m2) and AF (y-axis, units of log odds ratio atrial fibrillation liability) are plotted. The gradient
of each line represents the MR estimate for the corresponding model.

4.1. BMI Is Causally Associated with AF

The present study further strengthens the evidence base for the causal role of obesity
on AF development and confirms the results of previous MR analyses [35,36]. Obesity
is a rising global health challenge that is associated with significant indirect and direct
adverse cardiometabolic effects. High BMI is associated with atrial myocardial remod-
elling [37], atrial fibrosis [37] and epicardial fat deposition [15]. Epicardial fat is a highly
pro-arrhythmic entity causing abnormal conduction and repolarisation via paracrine mech-
anisms and direct fatty myocardial infiltration [15]. The findings of this study, therefore,
corroborate current knowledge on the strength of the association between high BMI and
AF. Clinically, these results are supported by randomised data. An RCT investigating
an intensive structured weight loss programme resulted in reductions in AF burden and
severity [38]. In a population with persistent AF, the RACE-3 trial showed improvements
in maintenance of sinus rhythm with an intervention of physical activity and dietary
restrictions, alongside optimised medical therapy [39]. Altogether, our study provides
further evidence to support the strength of this pathological pathway and highlights the
paramount importance of risk factor modification through weight loss.

4.2. SDB Is not Causal for AF Independent of BMI

The results of this study did not support a causal pathway between SDB, in general,
and AF, after accounting for BMI. There is a growing body of observational [8–11] and
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clinical trial evidence [12,13] suggesting a possible lack of direct causal association between
OSA, the most common form of SDB, and AF. A recent, small RCT failed to show a benefit
of CPAP against AF recurrence after cardioversion in patients with persistent AF [12],
though the results should be interpreted with caution as recruitment targets were not met.
Another adequately powered trial enrolling patients with paroxysmal AF failed to show
a benefit of CPAP in reducing AF burden in patients with moderate to severe OSA [13].
However, there are also many studies that support an independent association between
OSA and AF. Experimental models of OSA have previously shown increased vulnerability
to AF [40]. An association between OSA and increased risk of AF in community and sleep
clinic cohorts has been reported in observational studies [4–6] and observational meta-
analysis reported reduced AF recurrence with CPAP therapy [7]. Similarly, a recent MR
study reported a Mendelian randomisation association between genetically proxied OSA
and AF, though only five SNPs were instrumented in this analysis, with two associated
with BMI or whole-body, fat-free mass at the genome-wide significance level [20]. Our
study builds on these data by including almost six-fold more SNPs significantly correlated
with sleep apnoea traits, in addition to performing multivariable MR to control for the
well-characterised, powerful pleiotropic effects of BMI on the relationship between SDB
and AF.

A possible explanation to reconcile our findings with the observational studies sup-
porting a causal link between OSA and AF is that statistical adjustment for confounders in
observational studies is limited by unmeasured or unmeasurable confounding, to which
MR analysis is more robust. Furthermore, multivariable regression can be limited by
violation of the assumption that no included covariates are subject to collider bias or
measurement imprecision [41]. Considering BMI as a covariate, if BMI measurements
were subject to random error or intraindividual variation, regression coefficients would be
attenuated such that the impact of BMI on the relationship between OSA and AF would be
underestimated. Genetic variants strongly related with OSA and BMI generally maintain
their associations throughout life, enabling the MR approach to reduce attenuation by errors
and resultant bias [19]. Finally, our study looked as SDBs, in general, as the exposure, rather
than OSA specifically. It is possible that the more severe forms of SDB, such as OSA, are
causally associated with AF, and this effect was diluted and lost when considering all SDBs,
in general. Larger future GWAS that allow for MR analyses with increased statistical power
will enable further parsing of the independent effects of OSA on AF with the multivariable
MR methodology.

4.3. Strengths and Limitations

Our study provides evidence supporting previous RCTs with the methodological
strengths of the MR design, which addresses key limitations of conventional observa-
tional epidemiological studies. Principally, independent allele distribution at conception
distributes confounders equally, analogous to a ‘natural’ RCT. Additionally, disease patho-
genesis is unlikely to alter germline genotype, rendering associations between genotype
and disease outcome less vulnerable to reverse causality [19]. This is particularly important
as, following the establishment of a proarrhythmogenic atrial substrate, AF perpetuates
further AF, complicating exposure–outcome interactions. Whilst clinically relevant causal
effects can only be demonstrated in adequately powered and well-conducted RCTs, MR
has previously predicted late-stage therapeutic failure in a phase III cardiovascular trial,
where classical observational studies suggested promise [42]. Taken together with the RCTs
of CPAP in AF [12,13], the present study provides further evidence to support the recently
downgraded IIb recommendation of considering OSA management in patients with AF [1].

Using a GWAS for snoring as a proxy for genetically determined SDB and extrapolat-
ing to OSA is a limitation of this study. There are a few reasons why this approach was
chosen. In the GWAS for snoring performed by Campos et al. [23], the trait that showed
the highest genetic correlation with snoring was OSA (rG = 0.78, p = 3 × 10−5), indicating a
strong association between the traits. This genetic correlation remained significant follow-
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ing sensitivity analysis adjusting for BMI. Similarly, significant genetic correlations were
observed between snoring genes and two other measures of overnight oxyhaemoglobin sat-
uration that are known proxies of sleep-disordered breathing: minimum SpO2 saturation,
and percentage of sleep with oxyhaemoglobin saturation under 90%. Using these discovery
GWAS summary statistics, Campos et al. [23] subsequently developed and validated a PGS
in an independent target sample. Participants in the highest PGS decile had around twice
the odds of probable OSA compared with those in the lowest decile, indicating the validity
of snoring as a genetic proxy for OSA in this study.

Another limitation is that MR analysis considers associations of lifelong, cumulative
genetic risk, which is not equivalent to associations measured in conventional epidemiolog-
ical studies. This explains why ORs of AF per 1-SD kg/m2 increase in genetically predicted
BMI reported in our study are larger than corresponding estimates in a large, contemporary
epidemiological meta-analysis [14]. MR estimates should, therefore, not be extrapolated
to infer the magnitude of effect of a clinical intervention. Additionally, summary GWAS
data used in this study [22–24] were derived mainly from individuals of European ancestry,
which may limit the generalisability of our findings to non-European ancestry populations.
Although further study in these populations is warranted, using ethnically homogeneous
samples in our analysis reduces the likelihood of associations between genetic variant and
outcome being confounded by hidden population structure. Finally, a degree of overlap
existed between the SDB and AF cohort, with a maximum estimated overlap of 78% and,
therefore, a resultant risk of bias of ~7.8%. However, this would bias toward a Type 1 rather
than Type 2 error and, therefore, it should not produce bias in this negative study finding.

5. Conclusions

In summary, our MR study explored the relationships between SDB, BMI and AF. Our
results support previous observational and RCT evidence that BMI is likely to be causally
related to the development of AF, while adding that these effects are likely independent of
SDB. Our study suggests that an independent causal pathway between SDB, in general,
and AF is unlikely. However, we cannot exclude that the more severe forms of SDB, such
as OSA, are independently causally associated with AF. The RCTs currently recruiting to
explore the effects of CPAP therapy on AF outcomes should further clarify the role of OSA
management in patients with AF and inform clinical guidelines.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes13010104/s1, Table S1: MR results investigating the effect of SDB and BMI on the
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MR estimates in the analysis of BMI and AF.
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