28,815 research outputs found

    A comparison of spectral element and finite difference methods using statically refined nonconforming grids for the MHD island coalescence instability problem

    Full text link
    A recently developed spectral-element adaptive refinement incompressible magnetohydrodynamic (MHD) code [Rosenberg, Fournier, Fischer, Pouquet, J. Comp. Phys. 215, 59-80 (2006)] is applied to simulate the problem of MHD island coalescence instability (MICI) in two dimensions. MICI is a fundamental MHD process that can produce sharp current layers and subsequent reconnection and heating in a high-Lundquist number plasma such as the solar corona [Ng and Bhattacharjee, Phys. Plasmas, 5, 4028 (1998)]. Due to the formation of thin current layers, it is highly desirable to use adaptively or statically refined grids to resolve them, and to maintain accuracy at the same time. The output of the spectral-element static adaptive refinement simulations are compared with simulations using a finite difference method on the same refinement grids, and both methods are compared to pseudo-spectral simulations with uniform grids as baselines. It is shown that with the statically refined grids roughly scaling linearly with effective resolution, spectral element runs can maintain accuracy significantly higher than that of the finite difference runs, in some cases achieving close to full spectral accuracy.Comment: 19 pages, 17 figures, submitted to Astrophys. J. Supp

    Broken time-reversal symmetry in Josephson junction involving two-band superconductors

    Full text link
    A novel time-reversal symmetry breaking state is found theoretically in the Josephson junction between the two-gap superconductor and the conventional s-wave superconductor. This occurs due to the frustration between the three order parameters analogous to the two antiferromagnetically coupled XY-spins put under a magnetic field. This leads to the interface states with the energies inside the superconducting gap. Possible experimental observations of this state with broken time-reversal symmetry are discussed.Comment: 9 pages, 1 figur

    Screened Interaction and Self-Energy in an Infinitesimally Polarized Electron Gas via the Kukkonen-Overhauser Method

    Full text link
    The screened electron-electron interaction Wσ,σ′W_{\sigma, \sigma'} and the electron self-energy in an infinitesimally polarized electron gas are derived by extending the approach of Kukkonen and Overhauser. Various quantities in the expression for Wσ,σ′W_{\sigma, \sigma'} are identified in terms of the relevant response functions of the electron gas. The self-energy is obtained from Wσ,σ′W_{\sigma, \sigma'} by making use of the GW method which in this case represents a consistent approximation. Contact with previous calculations is made.Comment: 7 page

    Photonic Clusters

    Full text link
    We show through rigorous calculations that dielectric microspheres can be organized by an incident electromagnetic plane wave into stable cluster configurations, which we call photonic molecules. The long-range optical binding force arises from multiple scattering between the spheres. A photonic molecule can exhibit a multiplicity of distinct geometries, including quasicrystal-like configurations, with exotic dynamics. Linear stability analysis and dynamical simulations show that the equilibrium configurations can correspond with either stable or a type of quasi-stable states exhibiting periodic particle motion in the presence of frictional dissipation.Comment: 4 pages, 3 figure

    An automated method for mapping geomorphological expressions of former subglacial meltwater pathways (hummock corridors) from high resolution digital elevation data

    Get PDF
    Elongated tracts of hummocks or ‘hummock corridors’, exposed on palaeo-ice sheet beds, are believed to represent former subglacial meltwater pathways. Here, we present a method, coded in MATLAB, for automatically detecting and mapping hummock corridors from high-resolution digital elevation models (DEMs). Initially the DEM is filtered to remove bed roughness outside the size range of hummocks. A Fast Fourier Transform is then performed to determine the dominant orientation of hummock corridors and remove misaligned features. Finally, image segmentation is used to isolate and extract the hummock corridors as a binary mask. We tested this automated approach visually and statistically against detailed manual mapping in three areas of Canada and northern Scandinavia. Results show that while the automated method does not perfectly reproduce the manual mapping, it successfully captures the general configuration, morphometry (length, width) and location of hummock corridors, despite variation in expression across and between sites. This technique is ideally suited to take advantage of newly available high-resolution digital elevation data (e.g. the ArcticDEM), whose enormous volume makes large-scale manual mapping prohibitively time consuming. Its application will enable efficient and comprehensive mapping of the spatial distribution of hummock corridors across palaeo-beds that is necessary for deriving insights into their formation and the organisation of subglacial meltwater flow beneath ice sheets

    Entangled light from Bose-Einstein condensates

    Full text link
    We propose a method to generate entangled light with a Bose-Einstein condensate trapped in a cavity, a system realized in recent experiments. The atoms of the condensate are trapped in a periodic potential generated by a cavity mode. The condensate is continuously pumped by a laser and spontaneously emits a pair of photons of different frequencies in two distinct cavity modes. In this way, the condensate mediates entanglement between two cavity modes which leak out and can be separated and exhibit continuous variable entanglement. The scheme exploits the experimentally demonstrated strong, steady and collective coupling of condensate atoms to a cavity field.Comment: 5 pages and 5 figure
    • …
    corecore