27 research outputs found

    Studying the effect of blue-green infrastructure on microclimate and human thermal comfort in Melbourne’s central business district

    Get PDF
    Blue-green infrastructure (BGI) is defined as a strategically planned network of natural and semi-natural areas with other environmental features designed and managed to deliver a wide range of ecosystem services, which include microclimate regulation and enhanced human thermal comfort. While green infrastructure is widely known to be capable of mitigating the adverse effects of urban heat island, the effect of blue infrastructure to regulate thermal comfort is still poorly understood. This study investigates several blue-green-infrastructure (BGI) scenarios in the central business district (CBD) of Melbourne, Australia to assess their effects on microclimate and human thermal comfort. Three-dimensional microclimatic modelling software, ENVI-met, was used to simulate the microclimate and human thermal comfort. Physiological equivalent temperature (PET) was used to quantify the level of thermal comfort in selected research areas. Ten different scenarios were simulated, which included those based on green roofs, green walls, trees, ponds and fountains. The simulations suggest that green roofs and green walls in the high-rise building environment have a small temperature reduction in its surrounding area by up to 0.47 °C and 0.27 °C, respectively, and there is no noticeable improvement in the level of thermal perception. The tree-based scenarios decrease temperature by up to 0.93 °C and improve the thermal perception from hot to warm. Scenarios based on water bodies and fountains decrease the temperature by up to 0.51 °C and 1.48 °C, respectively, yet they cannot improve the thermal perception of the area. A deeper water body has a better microclimate improvement as compared to a shallow one. The temperature reduction in the fountain scenario tends to be local and the effect could only be felt within a certain radius from the fountain

    Cost-analysis of XELOX and FOLFOX4 for treatment of colorectal cancer to assist decision- making on reimbursement

    Get PDF
    Abstract Background: XELOX (capecitabine + oxaliplatin) and FOLFOX 4 (5-FU + folinic acid + oxaliplatin) have shown similar improvements in survival in patients with metastatic colorectal cancer (MCRC). A US cost-minimization study found that the two regimens had similar costs from a healthcare provider perspective but XELOX had lower costs than FOLFOX4 from a societal perspective, while a Japanese cost-effectiveness study found XELOX had superior cost-effectiveness. This study compared the costs of XELOX and FOLFOX4 in patients with MCRC recently treated in two oncology departments in Hong Kong. Methods: Cost data were collected from the medical records of 60 consecutive patients (30 received XELOX and 30 FOLFOX4) from two hospitals. Drug costs, outpatient visits, hospital days and investigations were recorded and expressed as cost per patient from the healthcare provider perspective. Estimated travel and time costs were included in a societal perspective analysis. All costs were classed as either scheduled (associated with planned chemotherapy and follow-up) or unscheduled (unplanned visits or admissions and associated tests and medicines). Costs were based on government and hospital sources and expressed in US dollars (US).Results:XELOXpatientsreceivedanaverageof7.3chemotherapycycles(ofthe8plannedcycles)andFOLFOX4patientsreceived9.2cycles(ofthe12plannedcycles).Thescheduledcostperpatientpercyclewas). Results: XELOX patients received an average of 7.3 chemotherapy cycles (of the 8 planned cycles) and FOLFOX4 patients received 9.2 cycles (of the 12 planned cycles). The scheduled cost per patient per cycle was 2,046 for XELOX and 2,152forFOLFOX4,whiletheunscheduledcostwas2,152 for FOLFOX4, while the unscheduled cost was 240 and 421,respectively.Totaltreatmentcostperpatientwas421, respectively. Total treatment cost per patient was 16,609 for XELOX and 23,672forFOLFOX4;thetotalcostforFOLFOX4was3723,672 for FOLFOX4; the total cost for FOLFOX4 was 37% greater than that of XELOX. The addition of the societal costs increased the total treatment cost per patient to 17,836 for XELOX and $27,455 for FOLFOX4. Sensitivity analyses showed XELOX was still less costly than FOLFOX4 when using full drug regimen costs, incorporating data from a US model with costs and adverse event data from their clinical trial and with the removal of oxaliplatin from both treatment arms. Capecitabine would have to cost around four times its present price in Hong Kong for the total resource cost of treatment with XELOX to equal that of FOLFOX4

    Sawdust amendment in agricultural and pasture soils can reduce iodine losses

    Get PDF
    Iodine loss is common in the soil of hilly regions due to higher precipitation rates and steeper slopes. Iodine deficiency in soil reduces iodine’s bioavailability to fruits and vegetables and consequently may contribute to health complications. However, the iodine retention of soils after the addition of selected organic and inorganic amendments has not been studied. Therefore, a study was carried out to investigate iodine loss during surface runoff. For this purpose, a soil amendment (namely, sawdust, charcoal, wood ash, lime or gypsum) was applied separately to pasture and agricultural soils under natural rainfall conditions. The soil was fertigated with iodine in the form of potassium iodide (KI) at the rate of 200 ppm. Surface runoff was related to soil properties. Results showed that iodine content in surface runoff was linearly related with soil pH (R2 = 0.89, p charcoal > wood ash > lime > gypsum. The study results indicated that organic amendments, especially sawdust, improved soil properties and increased the iodine retention capacity of soils

    Development of a cost-based design model for spread footings in cohesive soils

    Get PDF
    The use of cost-effective construction design approaches is an emerging concept in the field of sustainable environments. The design of the foundation for the construction of any infrastructure-related building entails three basic requirements, i.e., serviceability limit state (SLS), ultimate limit state (ULS), and economics. Engineering economy coupled with safety are the two main essentials for a successful construction project. The conventional design approaches are based on hit and trial methods to approach cost-effective design. Additionally, safety requirements are prioritized over the economic aspect of foundation design and do not consider safety requirements and cost simultaneously. This study presents a design approach that considers foundation construction costs while satisfying all the technical requirements of a shallow foundation design. This approach is called an optimization process in which the cost-based isolated foundation design charts were developed based on the field SPT N data. The design charts are the first of their kind for the robust design of foundations and can be used to compare the economic impact of different bearing capacity models. Furthermore, the design framework considers the quantitative impact of the different applied factors of safety values in terms of cost. The results show that Vesic’s equation yields higher values of bearing capacities than Terzaghi and Meyerhof. On the other hand, Vesic’s theory offers a 37.5% reduction in cost as compared to the conventional design approach of the foundation for isolated footing

    Identification of Embodied Environmental Attributes of Construction in Metropolitan and Growth Region of Melbourne, Australia to Support Urban Planning

    Get PDF
    As growth regions evolve to accommodate the increasing population, they need to develop a wider variety of residential properties to accommodate the varying needs of the residents. As a result, the new accommodation is denser which involves higher embodied water carbon and energy. This research compares the construction differences in metropolitan and growth regions of Melbourne to identify embodied carbon, water, and energy. Representative areas of 25 km2 are selected from both regions. The growth region has 80% of the built area comprised of 2nd generation low-rise residential buildings whereas the prolific construction type in the Metropolitan region is mixed purpose industrial with 30% of the built area comprising of this type. The methodology implies open-source satellite imagery to build a spatial dataset in QGIS. The visual identification of the constructions in the study areas enables to identity the materials used in their construction. The total embodied carbon, water, and energy for the Metropolitan region are 32,895 tonnes, 4192 mL, and 3,694,412 GJ, respectively, whereas in the growth region, the totals are 179,376 tonnes carbon, 2533 mL water, and 2,243,571 GJ. Whilst Metropolitan has a significantly higher overall footprint when this is compared to the population of each region, it is shown that the growth region with its current construction type has a higher embodied carbon, water, and energy per head. The total per head for Metropolitan is 226.7 GJ energy, 257 kL water, and 20 tonnes carbon, whereas in the growth region, the embodied energy, water, and carbon, respectively, per head is 287.4 GJ, 324.6 kL, and 22 tonnes. The current performance per head of the growth region is considerably lower than that of Metropolitan. Using diverse residential construction types and efficient materials can serve the demanding needs of denser populated areas

    A randomised controlled trial of supplemental oxygen versus medical air during exercise training in people with chronic obstructive pulmonary disease: Supplemental oxygen in pulmonary rehabilitation trial (SuppORT) (Protocol)

    Get PDF
    © 2016 Alison et al. Background: Oxygen desaturation during exercise is common in people with chronic obstructive pulmonary disease (COPD). The aim of the study is to determine, in people with COPD who desaturate during exercise, whether supplemental oxygen during an eight-week exercise training program is more effective than medical air (sham intervention) in improving exercise capacity and health-related quality of life both at the completion of training and at six-month follow up. Methods/Design: This is a multi-centre randomised controlled trial with concealed allocation, blinding of participants, exercise trainers and assessors, and intention-to-treat analysis. 110 people with chronic obstructive pulmonary disease who demonstrate oxygen desaturation lower than 90 % during the six-minute walk test will be recruited from pulmonary rehabilitation programs in seven teaching hospitals in Australia. People with chronic obstructive pulmonary disease on long term oxygen therapy will be excluded. After confirmation of eligibility and baseline assessment, participants will be randomised to receive either supplemental oxygen or medical air during an eight-week supervised treadmill and cycle exercise training program, three times per week for eight weeks, in hospital outpatient settings. Primary outcome measures will be endurance walking capacity assessed by the endurance shuttle walk test and health-related quality of life assessed by the Chronic Respiratory Disease Questionnaire. Secondary outcomes will include peak walking capacity measured by the incremental shuttle walk test, dyspnoea via the Dyspnoea-12 questionnaire and physical activity levels measured over seven days using an activity monitor. All outcomes will be measured at baseline, completion of training and at six-month follow up. Discussion: Exercise training is an essential component of pulmonary rehabilitation for people with COPD. This study will determine whether supplemental oxygen during exercise training is more effective than medical air in improving exercise capacity and health-related quality of life in people with COPD who desaturate during exercise. Trial registration: Australian New Zealand Clinical Trials Registry ACTRN12612000395831 , 5th Jan,201

    Cost-analysis of XELOX and FOLFOX4 for treatment of colorectal cancer to assist decision-making on reimbursement

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>XELOX (capecitabine + oxaliplatin) and FOLFOX 4 (5-FU + folinic acid + oxaliplatin) have shown similar improvements in survival in patients with metastatic colorectal cancer (MCRC). A US cost-minimization study found that the two regimens had similar costs from a healthcare provider perspective but XELOX had lower costs than FOLFOX4 from a societal perspective, while a Japanese cost-effectiveness study found XELOX had superior cost-effectiveness. This study compared the costs of XELOX and FOLFOX4 in patients with MCRC recently treated in two oncology departments in Hong Kong.</p> <p>Methods</p> <p>Cost data were collected from the medical records of 60 consecutive patients (30 received XELOX and 30 FOLFOX4) from two hospitals. Drug costs, outpatient visits, hospital days and investigations were recorded and expressed as cost per patient from the healthcare provider perspective. Estimated travel and time costs were included in a societal perspective analysis. All costs were classed as either scheduled (associated with planned chemotherapy and follow-up) or unscheduled (unplanned visits or admissions and associated tests and medicines). Costs were based on government and hospital sources and expressed in US dollars (US).</p><p>Results</p><p>XELOXpatientsreceivedanaverageof7.3chemotherapycycles(ofthe8plannedcycles)andFOLFOX4patientsreceived9.2cycles(ofthe12plannedcycles).Thescheduledcostperpatientpercyclewas).</p> <p>Results</p> <p>XELOX patients received an average of 7.3 chemotherapy cycles (of the 8 planned cycles) and FOLFOX4 patients received 9.2 cycles (of the 12 planned cycles). The scheduled cost per patient per cycle was 2,046 for XELOX and 2,152forFOLFOX4,whiletheunscheduledcostwas2,152 for FOLFOX4, while the unscheduled cost was 240 and 421,respectively.Totaltreatmentcostperpatientwas421, respectively. Total treatment cost per patient was 16,609 for XELOX and 23,672forFOLFOX4;thetotalcostforFOLFOX4was3723,672 for FOLFOX4; the total cost for FOLFOX4 was 37% greater than that of XELOX. The addition of the societal costs increased the total treatment cost per patient to 17,836 for XELOX and $27,455 for FOLFOX4. Sensitivity analyses showed XELOX was still less costly than FOLFOX4 when using full drug regimen costs, incorporating data from a US model with costs and adverse event data from their clinical trial and with the removal of oxaliplatin from both treatment arms. Capecitabine would have to cost around four times its present price in Hong Kong for the total resource cost of treatment with XELOX to equal that of FOLFOX4.</p> <p>Conclusion</p> <p>XELOX costs less than FOLFOX4 for this patient group with MCRC from both the healthcare provider and societal perspectives.</p
    corecore