486 research outputs found

    Hodge polynomials of some moduli spaces of Coherent Systems

    Full text link
    When k<nk<n, we study the coherent systems that come from a BGN extension in which the quotient bundle is strictly semistable. In this case we describe a stratification of the moduli space of coherent systems. We also describe the strata as complements of determinantal varieties and we prove that these are irreducible and smooth. These descriptions allow us to compute the Hodge polynomials of this moduli space in some cases. In particular, we give explicit computations for the cases in which (n,d,k)=(3,d,1)(n,d,k)=(3,d,1) and dd is even, obtaining from them the usual Poincar\'e polynomials.Comment: Formerly entitled: "A stratification of some moduli spaces of coherent systems on algebraic curves and their Hodge--Poincar\'e polynomials". The paper has been substantially shorten. Theorem 8.20 has been revised and corrected. Final version accepted for publication in International Journal of Mathematics. arXiv admin note: text overlap with arXiv:math/0407523 by other author

    Empowerment and ownership in effective internationalisation of the higher education curriculum

    Get PDF
    Internationalising the curriculum (IOC) in order to produce graduates with global citizenship skills is a common strategic goal in modern higher education. The extent to which this is achieved and the level of understanding amongst staff and students of what IOC involves and the benefits it imparts are varied. In this study, activities and attitudes across 15 subject disciplines delivered in a modern UK university were surveyed through an analysis of official course documentation, and semi-structured interviews with a range of academic staff. The outcomes are discussed in relation to the level of understanding and ownership that staff have of IOC. Through the modification of a process control model Barnett (European Journal of Education, 29(2), 165–179, 1994), suggestions are made as to how to move this top-down strategic imperative forward through empowerment of the academic staff involved in course delivery

    Elemental boron doping behavior in silicon molecular beam epitaxy

    Get PDF
    Boron-doped Si epilayers were grown by molecular beam epitaxy (MBE) using an elemental boron source, at levels up to 2×1020 cm−3, to elucidate profile control and electrical activation over the growth temperature range 450–900 °C. Precipitation and surface segregation effects were observed at doping levels of 2×1020 cm−3 for growth temperatures above 600 °C. At growth temperatures below 600 °C, excellent profile control was achieved with complete electrical activation at concentrations of 2×1020 cm−3, corresponding to the optimal MBE growth conditions for a range of Si/SixGe1−x heterostructures

    Struggling and juggling: a comparison of assessment loads in research and teaching-intensive universities

    Get PDF
    In spite of the rising tide of metrics in UK higher education, there has been scant attention paid to assessment loads, when evidence demonstrates that heavy demands lead to surface learning. Our study seeks to redress the situation by defining assessment loads and comparing them across research-and teaching intensive universities. We clarify the concept of ‘assessment load’ in response to findings about high volumes of summative assessment on modular degrees. We define assessment load across whole undergraduate degrees, according to four measures: the volume of summative assessment; volume of formative assessment; proportion of examinations to coursework; number of different varieties of assessment. All four factors contribute to the weight of an assessment load, and influence students’ approaches to learning. Our research compares programme assessment data from 73 programmes in 14 UK universities, across two institutional categories. Research-intensives have higher summative assessment loads and a greater proportion of examinations; teaching-intensives have higher varieties of assessment. Formative assessment does not differ significantly across both university groups. These findings pose particular challenges for students in different parts of the sector. Our study questions the wisdom that ‘more’ is always better, proposing that lighter assessment loads may make room for ‘slow’ and deep learning

    Quantization of Fayet-Iliopoulos Parameters in Supergravity

    Full text link
    In this short note we discuss quantization of the Fayet-Iliopoulos parameter in supergravity theories. We argue that in supergravity, the Fayet-Iliopoulos parameter determines a lift of the group action to a line bundle, and such lifts are quantized. Just as D-terms in rigid N=1 supersymmetry are interpreted in terms of moment maps and symplectic reductions, we argue that in supergravity the quantization of the Fayet-Iliopoulos parameter has a natural understanding in terms of linearizations in geometric invariant theory (GIT) quotients, the algebro-geometric version of symplectic quotients.Comment: 21 pages, utarticle class; v2: typos and tex issue fixe

    Stratifying quotient stacks and moduli stacks

    Full text link
    Recent results in geometric invariant theory (GIT) for non-reductive linear algebraic group actions allow us to stratify quotient stacks of the form [X/H], where X is a projective scheme and H is a linear algebraic group with internally graded unipotent radical acting linearly on X, in such a way that each stratum [S/H] has a geometric quotient S/H. This leads to stratifications of moduli stacks (for example, sheaves over a projective scheme) such that each stratum has a coarse moduli space.Comment: 25 pages, submitted to the Proceedings of the Abel Symposium 201
    • 

    corecore