983 research outputs found

    Pretreatment of Mesenchymal Stem Cells Manipulates Their Vasculoprotective Potential While Not Altering Their Homing Within the Injured Gut

    Get PDF
    Mesenchymal stem cells (MSCs) have shown therapeutic promise in many experimental and clinical models of inflammation. However, a commonly reported feature of MSC transplantation is poor homing to injured tissues. Previously, we have shown that pretreatment with cytokines/chemical factors enhances hematopoietic SC adhesion within intestinal microvasculature following ischemia‐reperfusion (IR) injury. Using intravital microscopy, the ability of similar pretreatment strategies to enhance the recruitment of murine MSCs to murine intestinal microvasculature following IR injury was investigated. Primary MSCs were isolated from bone marrow and selected on the basis of platelet‐derived growth factor receptor‐α and SC antigen‐1 positivity (PDGFRα(+)/Sca‐1(+)). MSC recruitment was similar in IR injured gut mucosa when compared with sham operated controls, with limited cell adhesion observed. MSCs appeared contorted in microvessels, suggesting physical entrapment. Although not recruited specifically by injury, MSC administration significantly reduced neutrophil recruitment and improved tissue perfusion in the severely injured jejunum. Vasculoprotective effects were not demonstrated in the lesser injured ileum. Pretreatment of MSCs with tumor necrosis factor (TNF)‐α, CXCL12, interferon (IFN)‐γ, or hydrogen peroxide did not enhance their intestinal recruitment. In fact, TNFα and IFNγ removed the previous therapeutic ability of transplanted MSCs to reduce neutrophil infiltration and improve perfusion in the jejunum. We provide direct evidence that MSCs can rapidly limit leukocyte recruitment and improve tissue perfusion following intestinal IR injury. However, this study also highlights complexities associated with strategies to improve MSC therapeutic efficacy. Future studies using cytokine/chemical pretreatments to enhance MSC recruitment/function require careful consideration and validation to ensure therapeutic function is not impeded. Stem Cells 2015;33:2785–279

    Hospital admission with non-alcoholic fatty liver disease is associated with increased all-cause mortality independent of cardiovascular risk factors

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) is common and strongly associated with the metabolic syndrome. Though NAFLD may progress to end-stage liver disease, the top cause of mortality in NAFLD is cardiovascular disease (CVD). Most of the data on liver-related mortality in NAFLD derives from specialist liver centres. It is not clear if the higher reported mortality rates in individuals with non-cirrhotic NAFLD are entirely accounted for by complications of atherosclerosis and diabetes. Therefore, we aimed to describe the CVD burden and mortality in NAFLD when adjusting for metabolic risk factors using a ‘real world’ cohort. We performed a retrospective study of patients followed-up after an admission to non-specialist hospitals with a NAFLD-spectrum diagnosis. Non-cirrhotic NAFLD and NAFLD-cirrhosis patients were defined by ICD-10 codes. Cases were age-/sex-matched with non-NAFLD hospitalised patients. All-cause mortality over 14-years follow-up after discharge was compared between groups using Cox proportional hazard models adjusted for demographics, CVD, and metabolic syndrome components. We identified 1,802 patients with NAFLD-diagnoses: 1,091 with non-cirrhotic NAFLD and 711 with NAFLD-cirrhosis, matched to 24,737 controls. There was an increasing burden of CVD with progression of NAFLD: for congestive heart failure 3.5% control, 4.2% non-cirrhotic NAFLD, 6.6% NAFLD-cirrhosis; and for atrial fibrillation 4.7% control, 5.9% non-cirrhotic NAFLD, 12.1% NAFLD-cirrhosis. Over 14-years follow-up, crude mortality rates were 14.7% control, 13.7% non-cirrhotic NAFLD, and 40.5% NAFLD-cirrhosis. However, after adjusting for demographics, non-cirrhotic NAFLD (HR 1.3 (95% CI 1.1–1.5)) as well as NAFLD-cirrhosis (HR 3.7 (95% CI 3.0–4.5)) patients had higher mortality compared to controls. These differences remained after adjusting for CVD and metabolic syndrome components: non-cirrhotic NAFLD (HR 1.2 (95% CI 1.0–1.4)) and NAFLD-cirrhosis (HR 3.4 (95% CI 2.8–4.2)). In conclusion, from a large non-specialist registry of hospitalised patients, those with non-cirrhotic NAFLD had increased overall mortality compared to controls even after adjusting for CVD

    A new look at population change and regional development in Aotearoa New Zealand

    Get PDF
    In New Zealand, population change is interlinked with regional development. Places growing in population attract regional investment, while regional investment—or lack thereof—can change migration patterns. However, to determine the appropriate response to population change for a community, it is important to understand that population change involves much more than “just” migration. Specifically, it involves interactions between the three components of population change: natural change (births minus deaths), net migration (international and internal) and population ageing (changing cohort size). For example, migration can be negative, but growth can be positive due to underlying natural increase or growth in cohort size. Responses need to differ, depending on these drivers. The goal of this article is to provide new insights into these interactions using data for 275 cities, towns and rural centres (hereafter “urban places”) in New Zealand for the period 1976 to 2013. The results show that natural change has been consistently positive for most urban places up to the present, although projections indicate that in the future this component will become negative across much of the country. At the same time, net migration shows considerable spatial variation, not only in terms of volume, but also direction (negative or positive), which differs markedly by age. A net gain of people of retirement age can offset a net loss of young adults to deliver overall growth, and vice-versa, but the two have very different implications for longer term growth. An analysis of the drivers of net migration using GIS and machine learning techniques provides an indication of the importance of economic conditions (land-use and access to markets), lifestyle, access to essential services (hospitals and education) and their interaction with age in regional change. The results show that population age is the best predictor of migration. Younger people are moving to cities for tertiary education and work and older people near or in retirement are moving to smaller lifestyle towns but also want to be close to amenities such as hospitals and international airports. The research also shows that natural lifestyle characteristics (landscape and climate), in combination with age are just as important as economic conditions for understanding migration. Regional development, such as infrastructure that helps business (ports and services) is important for the working age population but not necessarily the retirement age group. When regional development, age/life-cycle stage and lifestyle come together, such as in Queenstown and Tauranga, net migration gain is high

    Morphology, adipocyte size, and fatty acid analysis of dairy cattle digital cushions, and the effect of body condition score and age

    Get PDF
    The digital cushion is an essential part of maintaining a healthy foot, working to dissipate foot strike and body weight forces and lameness from claw horn disruption lesions. Despite the importance of the digital cushion, little is known about the basic anatomy, adipocyte morphology, and fatty acid composition in relation to age, limb position, and body condition score. In total, 60 claws (from 17 cows) were selected and collected from a herd, ensuring that body condition score data and computed micro-tomography were known for each animal. Digital cushion tissue underwent histological staining combined with stereology, systematic random sampling, and cell morphology analysis, in addition to lipid extraction followed by fatty acid analysis. The results describe digital cushion architecture and adipocyte sizes. Adipocyte size was similar across all 4 claws (distal left lateral and medial and distal right lateral and medial) and across the ages (aged 2–7 yr); however, animals with body condition score of 3.00 or more at slaughter had a significantly increased cell size in comparison to those with a score of less than 2.50. Of 37 fatty acid methyl esters identified, 5 differed between either the body condition score or different age groups. C10:0 capric acid, C14:0 myristic acid, C15:0 pentadecanoic acid, and C20:0 arachidic acid percentages were all lesser in lower body condition score cows, whereas C22:1n-9 erucic acid measurements were lesser in younger cows. Saturated fatty acid, monounsaturated fatty acid, and polyunsaturated fatty acid percentages were not altered in the different claws, ages, or body condition score groups. Triglyceride quantities did not differ for claw position or age but had decreased quantities in lower body condition score animals. Digital cushion anatomy, cellular morphology, and fatty acid composition have been described in general and also in animals with differing ages, body condition scores, and in the differing claws. Understanding fat deposition, mobilization, and composition are essential in not only understanding the roles that the digital cushion plays but also in preventing disorders and maintaining cattle health and welfare

    Proteome-based plasma biomarkers for Alzheimer's disease

    Get PDF
    Alzheimer's disease is a common and devastating disease for which there is no readily available biomarker to aid diagnosis or to monitor disease progression. Biomarkers have been sought in CSF but no previous study has used two-dimensional gel electrophoresis coupled with mass spectrometry to seek biomarkers in peripheral tissue. We performed a case-control study of plasma using this proteomics approach to identify proteins that differ in the disease state relative to aged controls. For discovery-phase proteomics analysis, 50 people with Alzheimer's dementia were recruited through secondary services and 50 normal elderly controls through primary care. For validation purposes a total of 511 subjects with Alzheimer's disease and other neurodegenerative diseases and normal elderly controls were examined. Image analysis of the protein distribution of the gels alone identifies disease cases with 56% sensitivity and 80% specificity. Mass spectrometric analysis of the changes observed in two-dimensional electrophoresis identified a number of proteins previously implicated in the disease pathology, including complement factor H (CFH) precursor and α-2-macroglobulin (α- 2M). Using semi-quantitative immunoblotting, the elevation of CFH and α- 2M was shown to be specific for Alzheimer's disease and to correlate with disease severity although alternative assays would be necessary to improve sensitivity and specificity. These findings suggest that blood may be a rich source for biomarkers of Alzheimer's disease and that CFH, together with other proteins such as α- 2M may be a specific markers of this illness. © 2006 The Author(s).link_to_subscribed_fulltex

    Stable isotope analysis provides new information on winter habitat use of declining avian migrants that is relevant to their conservation

    Get PDF
    Winter habitat use and the magnitude of migratory connectivity are important parameters when assessing drivers of the marked declines in avian migrants. Such information is unavailable for most species. We use a stable isotope approach to assess these factors for three declining African-Eurasian migrants whose winter ecology is poorly known: wood warbler Phylloscopus sibilatrix, house martin Delichon urbicum and common swift Apus apus. Spatially segregated breeding wood warbler populations (sampled across a 800 km transect), house martins and common swifts (sampled across a 3,500 km transect) exhibited statistically identical intra-specific carbon and nitrogen isotope ratios in winter grown feathers. Such patterns are compatible with a high degree of migratory connectivity, but could arise if species use isotopically similar resources at different locations. Wood warbler carbon isotope ratios are more depleted than typical for African-Eurasian migrants and are compatible with use of moist lowland forest. The very limited variance in these ratios indicates specialisation on isotopically restricted resources, which may drive the similarity in wood warbler populations' stable isotope ratios and increase susceptibility to environmental change within its wintering grounds. House martins were previously considered to primarily use moist montane forest during the winter, but this seems unlikely given the enriched nature of their carbon isotope ratios. House martins use a narrower isotopic range of resources than the common swift, indicative of increased specialisation or a relatively limited wintering range; both factors could increase house martins' vulnerability to environmental change. The marked variance in isotope ratios within each common swift population contributes to the lack of population specific signatures and indicates that the species is less vulnerable to environmental change in sub-Saharan Africa than our other focal species. Our findings demonstrate how stable isotope research can contribute to understanding avian migrants' winter ecology and conservation status

    South Korea's automotive labour regime, Hyundai Motors’ global production network and trade‐based integration with the European Union

    Get PDF
    This article explores the interrelationship between global production networks(GPNs) and free trade agreements (FTAs) in the South Korean auto industry and its employment relations. It focuses on the production network of the Hyundai Motor Group (HMG) — the third biggest automobile manufacturer in the world — and the FTA between the EU and South Korea. This was the first of the EU’s ‘new generation’ FTAs, which among other things contained provisions designed to protect and promote labour standards. The article’s argument is twofold. First, that HMG’s production network and Korea’s political economy (of which HMG is a crucial part) limited the possibilities for the FTA’s labour provisions to take effect. Second, that the commercial provisions in this same FTA simultaneously eroded HMG’s domestic market and corporate profitability, leading to adverse consequences for auto workers in the more insecure and low-paid jobs. In making this argument, the article advances a multiscalar conceptualization of the labour regime as an analytical intermediary between GPNs and FTAs. It also provides one of the first empirical studies of the EU–South Korea FTA in terms of employment relations, drawing on 105 interviews with trade unions, employer associations, automobile companies and state officials across both parties

    Neuronal activity in medial superior temporal area (MST) during memory-based smooth pursuit eye movements in monkeys

    Get PDF
    We examined recently neuronal substrates for predictive pursuit using a memory-based smooth pursuit task that distinguishes the discharge related to memory of visual motion-direction from that related to movement preparation. We found that the supplementary eye fields (SEF) contain separate signals coding memory and assessment of visual motion-direction, decision not-to-pursue, and preparation for pursuit. Since medial superior temporal area (MST) is essential for visual motion processing and projects to SEF, we examined whether MST carried similar signals. We analyzed the discharge of 108 MSTd neurons responding to visual motion stimuli. The majority (69/108 = 64%) were also modulated during smooth pursuit. However, in nearly all (104/108 = 96%) of the MSTd neurons tested, there was no significant discharge modulation during the delay periods that required memory of visual motion-direction or preparation for smooth pursuit or not-to-pursue. Only 4 neurons of the 108 (4%) exhibited significantly higher discharge rates during the delay periods; however, their responses were non-directional and not instruction specific. Representative signals in the MSTd clearly differed from those in the SEF during memory-based smooth pursuit. MSTd neurons are unlikely to provide signals for memory of visual motion-direction or preparation for smooth pursuit eye movements

    Abdominal subcutaneous adipose tissue insulin resistance and lipolysis in patients with non-alcoholic steatohepatitis

    Get PDF
    BACKGROUND: Systemic insulin resistance (IR) is a primary feature in non-alcoholic steatohepatitis (NASH), however, there remain limited data on tissue-specific insulin sensitivity in vivo. METHODS: We examined tissue-specific (adipose, muscle and liver) insulin sensitivity and inflammation in 16 European Caucasian patients with biopsy-confirmed NASH and in 15 healthy controls. All underwent a two-step hyperinsulinaemic euglycaemic clamp incorporating stable isotope measurements of carbohydrate and lipid metabolism with concomitant subcutaneous adipose tissue (SAT) microdialysis. RESULTS: Hepatic and muscle insulin sensitivity were decreased in patients with NASH compared with controls, as demonstrated by reduced suppression of hepatic glucose production and glucose disposal (Gd) rates following insulin infusion. In addition, rates of lipolysis were higher in NASH patients with impaired insulin-mediated suppression of free fatty acid levels. At a tissue specific level, abdominal SAT in patients with NASH was severely insulin resistant, requiring >sixfold more insulin to cause ½-maximal suppression of glycerol release when compared with healthy controls. Furthermore, patients with NASH had significantly higher circulating levels of pro-inflammatory adipocytokines than controls. CONCLUSION: NASH patients have profound IR in the liver, muscle and in particular adipose tissues. This study represents the first in vivo description of dysfunctional SAT in patients with NASH
    corecore