20 research outputs found

    Quantum Dynamical Algebra SU(1,1) in One-Dimensional Exactly Solvable Potentials

    Full text link
    We mainly explore the linear algebraic structure like SU(2) or SU(1,1) of the shift operators for some one-dimensional exactly solvable potentials in this paper. During such process, a set of method based on original diagonalizing technique is presented to construct those suitable operator elements, J0, J_\pm that satisfy SU(2) or SU(1,1) algebra. At last, the similarity between radial problem and one-dimensional potentials encourages us to deal with the radial problem in the same way.Comment: No figures, 9 Pages accepted by International Journal of Theoretical Physic

    The Peptidyl Prolyl Isomerase Rrd1 Regulates the Elongation of RNA Polymerase II during Transcriptional Stresses

    Get PDF
    Rapamycin is an anticancer agent and immunosuppressant that acts by inhibiting the TOR signaling pathway. In yeast, rapamycin mediates a profound transcriptional response for which the RRD1 gene is required. To further investigate this connection, we performed genome-wide location analysis of RNA polymerase II (RNAPII) and Rrd1 in response to rapamycin and found that Rrd1 colocalizes with RNAPII on actively transcribed genes and that both are recruited to rapamycin responsive genes. Strikingly, when Rrd1 is lacking, RNAPII remains inappropriately associated to ribosomal genes and fails to be recruited to rapamycin responsive genes. This occurs independently of TATA box binding protein recruitment but involves the modulation of the phosphorylation status of RNAPII CTD by Rrd1. Further, we demonstrate that Rrd1 is also involved in various other transcriptional stress responses besides rapamycin. We propose that Rrd1 is a novel transcription elongation factor that fine-tunes the transcriptional stress response of RNAPII

    A plan-based approach to Prolog recursion

    No full text

    Schistosomiasis: an imported infection

    No full text

    Polyploidy on Islands: Its Emergence and Importance for Diversification.

    No full text
    Published source must be acknowledged with citation Copyright must be acknowledged First publication by Frontiers Media must be acknowledgedWhole genome duplication or polyploidy is widespread among floras globally, but traditionally has been thought to have played a minor role in the evolution of island biodiversity, based on the low proportion of polyploid taxa present. We investigate five island systems (Juan Fernández, Galápagos, Canary Islands, Hawaiian Islands, and New Zealand) to test whether polyploidy (i) enhances or hinders diversification on islands and (ii) is an intrinsic feature of a lineage or an attribute that emerges in island environments. These island systems are diverse in their origins, geographic and latitudinal distributions, levels of plant species endemism (37% in the Galapagos to 88% in the Hawaiian Islands), and ploidy levels, and taken together are representative of islands more generally. We compiled data for vascular plants and summarized information for each genus on each island system, including the total number of species (native and endemic), generic endemicity, chromosome numbers, genome size, and ploidy levels. Dated phylogenies were used to infer lineage age, number of colonization events, and change in ploidy level relative to the non-island sister lineage. Using phylogenetic path analysis, we then tested how the diversification of endemic lineages varied with the direct and indirect effects of polyploidy (presence of polyploidy, time on island, polyploidization near colonization, colonizer pool size) and other lineage traits not associated with polyploidy (time on island, colonizer pool size, repeat colonization). Diploid and tetraploid were the most common ploidy levels across all islands, with the highest ploidy levels (>8x) recorded for the Canary Islands (12x) and New Zealand (20x). Overall, we found that endemic diversification of our focal island floras was shaped by polyploidy in many cases and certainly others still to be detected considering the lack of data in many lineages. Polyploid speciation on the islands was enhanced by a larger source of potential congeneric colonists and a change in ploidy level compared to overseas sister taxa.Published onlin

    Multidisciplinary Analysis with SORCER using Domain-Specific Objects

    No full text
    corecore