33,233 research outputs found

    Blocking and Persistence in the Zero-Temperature Dynamics of Homogeneous and Disordered Ising Models

    Full text link
    A ``persistence'' exponent theta has been extensively used to describe the nonequilibrium dynamics of spin systems following a deep quench: for zero-temperature homogeneous Ising models on the d-dimensional cubic lattice, the fraction p(t) of spins not flipped by time t decays to zero like t^[-theta(d)] for low d; for high d, p(t) may decay to p(infinity)>0, because of ``blocking'' (but perhaps still like a power). What are the effects of disorder or changes of lattice? We show that these can quite generally lead to blocking (and convergence to a metastable configuration) even for low d, and then present two examples --- one disordered and one homogeneous --- where p(t) decays exponentially to p(infinity).Comment: 8 pages (LaTeX); to appear in Physical Review Letter

    Velocity Dispersions and Dynamical Masses for a Large Sample of Quiescent Galaxies at z > 1: Improved Measures of the Growth in Mass and Size

    Get PDF
    We present Keck LRIS spectroscopy for a sample of 103 massive galaxies with redshifts 0.9 < z < 1.6. Of these, 56 are quiescent with high signal-to-noise absorption line spectra, enabling us to determine robust stellar velocity dispersions for the largest sample yet available beyond a redshift of 1. Together with effective radii measured from deep Hubble Space Telescope images, we calculate dynamical masses and address key questions relating to the puzzling size growth of quiescent galaxies over 0 < z < 2. We examine the relationship between stellar and dynamical masses at high redshift, finding that it closely follows that determined locally. We also confirm the utility of the locally-established empirical calibration which enables high-redshift velocity dispersions to be estimated photometrically, and we determine its accuracy to be 35%. To address recent suggestions that progenitor bias - the continued arrival of recently-quenched larger galaxies - can largely explain the size evolution of quiescent galaxies, we examine the growth at fixed velocity dispersion assuming this quantity is largely unaffected by the merger history. We demonstrate that significant size and mass growth have clearly occurred in individual systems. Parameterizing the relation between mass and size growth over 0 < z < 1.6 as R \propto M^alpha, we find alpha = 1.6 +- 0.3, in agreement with theoretical expectations from simulations of minor mergers. Relaxing the assumption that the velocity dispersion is unchanging, we examine growth assuming a constant ranking in galaxy velocity dispersion. This approach is applicable only to the large-dispersion tail of the distribution, but yields a consistent growth rate of alpha = 1.4 +- 0.2. Both methods confirm that progenitor bias alone is insufficient to explain our new observations and that quiescent galaxies have grown in both size and stellar mass over 0 < z < 1.6.Comment: Updated to match the published versio

    MOSFIRE Spectroscopy of Quiescent Galaxies at 1.5 < z < 2.5. I - Evolution of Structural and Dynamical Properties

    Get PDF
    We present deep near-infrared spectra for a sample of 24 quiescent galaxies in the redshift range 1.5 < z < 2.5 obtained with the MOSFIRE spectrograph at the W. M. Keck Observatory. In conjunction with a similar dataset we obtained in the range 1 < z < 1.5 with the LRIS spectrograph, we analyze the kinematic and structural properties for 80 quiescent galaxies, the largest homogeneously-selected sample to date spanning 3 Gyr of early cosmic history. Analysis of our Keck spectra together with measurements derived from associated HST images reveals increasingly larger stellar velocity dispersions and smaller sizes to redshifts beyond z~2. By classifying our sample according to Sersic indices, we find that among disk-like systems the flatter ones show a higher dynamical to stellar mass ratio compared to their rounder counterparts which we interpret as evidence for a significant contribution of rotational motion. For this subset of disk-like systems, we estimate that V/sigma, the ratio of the circular velocity to the intrinsic velocity dispersion, is a factor of two larger than for present-day disky quiescent galaxies. We use the velocity dispersion measurements also to explore the redshift evolution of the dynamical to stellar mass ratio, and to measure for the first time the physical size growth rate of individual systems over two distinct redshift ranges, finding a faster evolution at earlier times. We discuss the physical origin of this time-dependent growth in size in the context of the associated reduction of the systematic rotation.Comment: Updated to match the published versio

    MOSFIRE Spectroscopy of Quiescent Galaxies at 1.5 < z < 2.5. II - Star Formation Histories and Galaxy Quenching

    Get PDF
    We investigate the stellar populations for a sample of 24 quiescent galaxies at 1.5 < z < 2.5 using deep rest-frame optical spectra obtained with Keck MOSFIRE. By fitting templates simultaneously to the spectroscopic and photometric data, and exploring a variety of star formation histories, we obtain robust measurements of median stellar ages and residual levels of star formation. After subtracting the stellar templates, the stacked spectrum reveals the Halpha and [NII] emission lines, providing an upper limit on the ongoing star formation rate of 0.9 +/- 0.1 Msun/yr. By combining the MOSFIRE data to our sample of Keck LRIS spectra at lower redshift, we analyze in a consistent manner the quiescent population at 1 < z < 2.5. We find a tight relation (with a scatter of 0.13 dex) between the stellar age and the rest-frame U-V and V-J colors, which can be used to estimate the age of quiescent galaxies given their colors. Applying this age--color relation to large, photometric samples, we are able to model the number density evolution for quiescent galaxies of various ages. We find evidence for two distinct quenching paths: a fast quenching that produces compact post-starburst systems, and a slow quenching of larger galaxies. Fast quenching accounts for about a fifth of the growth of the red sequence at z~1.4, and half at z~2.2. We conclude that fast quenching is triggered by dramatic events such as gas-rich mergers, while slow quenching is likely caused by a different physical mechanism.Comment: 28 pages, 15 figures, accepted in Ap

    Discovery of a Strongly Lensed Massive Quiescent Galaxy at z=2.636: Spatially Resolved Spectroscopy and Indications of Rotation

    Get PDF
    We report the discovery of RG1M0150, a massive, recently quenched galaxy at z=2.636 that is multiply imaged by the cluster MACSJ0150.3-1005. We derive a stellar mass of log M_*=11.49+0.10-0.16 and a half-light radius of R_e,maj =1.8+-0.4 kpc. Taking advantage of the lensing magnification, we are able to spatially resolve a remarkably massive yet compact quiescent galaxy at z>2 in ground-based near-infrared spectroscopic observations using Magellan/FIRE and Keck/MOSFIRE. We find no gradient in the strength of the Balmer absorption lines over 0.6 R_e - 1.6 R_e, which are consistent with an age of 760 Myr. Gas emission in [NII] broadly traces the spatial distribution of the stars and is coupled with weak Halpha emission (log [NII]/Halpha = 0.6+-0.2), indicating that OB stars are not the primary ionizing source. The velocity dispersion within the effective radius is sigma_e = 271+-41 km/s. We detect rotation in the stellar absorption lines for the first time beyond z~1. Using a two-integral Jeans model that accounts for observational effects, we measure a dynamical mass of log M_dyn =11.24+-0.14 and V/sigma=0.70+-0.21. This is a high degree of rotation considering the modest observed ellipticity of 0.12+-0.08, but it is consistent with predictions from dissipational merger simulations that produce compact remnants. The mass of RG1M0150 implies that it is likely to become a slowly rotating elliptical. If it is typical, this suggests that the progenitors of massive ellipticals retain significant net angular momentum after quenching which later declines, perhaps through accretion of satellites.Comment: Accepted to ApJ Letters; updated to include revisions from the referee process, including an improved Fig.

    Stellar populations from spectroscopy of a large sample of quiescent galaxies at z > 1: Measuring the contribution of progenitor bias to early size growth

    Get PDF
    We analyze the stellar populations of a sample of 62 massive (log Mstar/Msun > 10.7) galaxies in the redshift range 1 < z < 1.6, with the main goal of investigating the role of recent quenching in the size growth of quiescent galaxies. We demonstrate that our sample is not biased toward bright, compact, or young galaxies, and thus is representative of the overall quiescent population. Our high signal-to-noise ratio Keck LRIS spectra probe the rest-frame Balmer break region which contains important absorption line diagnostics of recent star formation activity. We obtain improved measures of the various stellar population parameters, including the star-formation timescale tau, age and dust extinction, by fitting templates jointly to both our spectroscopic and broad-band photometric data. We identify which quiescent galaxies were recently quenched and backtrack their individual evolving trajectories on the UVJ color-color plane finding evidence for two distinct quenching routes. By using sizes measured in the previous paper of this series, we confirm that the largest galaxies are indeed among the youngest at a given redshift. This is consistent with some contribution to the apparent growth from recent arrivals, an effect often called progenitor bias. However, we calculate that recently-quenched objects can only be responsible for about half the increase in average size of quiescent galaxies over a 1.5 Gyr period, corresponding to the redshift interval 1.25 < z < 2. The remainder of the observed size evolution arises from a genuine growth of long-standing quiescent galaxies.Comment: Accepted for publication in the Astrophysical Journal, 14 pages, 11 figure

    Behaviour of spin-1/2 particle around a charged black hole

    Full text link
    Dirac equation is separable in curved space-time and its solution was found for both spherically and axially symmetric geometry. But most of the works were done without considering the charge of the black hole. Here we consider the spherically symmetric charged black hole background namely Reissner-Nordstrom black hole. Due to presence of the charge of black-hole charge-charge interaction will be important for the cases of incoming charged particle (e.g. electron, proton etc.). Therefore both gravitational and electromagnetic gauge fields should be introduced. Naturally behaviour of the particle will be changed from that in Schwarzschild geometry. We compare both the solutions. In the case of Reissner-Nordstrom black hole there is a possibility of super-radiance unlike Schwarzschild case. We also check this branch of the solution.Comment: 8 Latex pages and 4 Figures; RevTex.style; Accepted for Publication in Classical and Quantum Gravit

    Sign-time distributions for interface growth

    Full text link
    We apply the recently introduced distribution of sign-times (DST) to non-equilibrium interface growth dynamics. We are able to treat within a unified picture the persistence properties of a large class of relaxational and noisy linear growth processes, and prove the existence of a non-trivial scaling relation. A new critical dimension is found, relating to the persistence properties of these systems. We also illustrate, by means of numerical simulations, the different types of DST to be expected in both linear and non-linear growth mechanisms.Comment: 4 pages, 5 ps figs, replaced misprint in authors nam

    Measurement of the interaction strength in a Bose-Fermi mixture with 87Rb and 40K

    Full text link
    A quantum degenerate, dilute gas mixture of bosonic and fermionic atoms was produced using 87Rb and 40K. The onset of degeneracy was confirmed by observing the spatial distribution of the gases after time-of-flight expansion. Further, the magnitude of the interspecies scattering length between the doubly spin polarized states of 87Rb and 40K, |a_RbK|, was determined from cross-dimensional thermal relaxation. The uncertainty in this collision measurement was greatly reduced by taking the ratio of interspecies and intraspecies relaxation rates, yielding |a_RbK| = 250 +/- 30 a_0, which is a lower value than what was reported in [M. Modugno et al., Phys. Rev. A 68, 043626 (2003)]. Using the value for |a_RbK| reported here, current T=0 theory would predict a threshold for mechanical instability that is inconsistent with the experimentally observed onset for sudden loss of fermions in [G. Modugno et al., Science 297, 2240 (2002)].Comment: RevTeX4 + 4 eps figures; Replaced with published versio

    Deep Inelastic Lepton-Nucleon Scattering at HERA

    Full text link
    Data from the HERA collider experiments, H1 and ZEUS, have been fundamental to the rapid recent development of our understanding of the partonic composition of the proton and of QCD. This report focuses on inclusive measurements of neutral and charged current cross sections at HERA, using the full available data taken to date. The present precision on the proton parton densities and the further requirements for future measurements at the Tevatron and LHC are explored. Emphasis is also placed on the region of very low Bjorken-x and Q^2. In this region, the `confinement' transition takes place from partons to hadrons as the relevant degrees of freedom and novel or exotic QCD effects associated with large parton densities are most likely to be observed. Finally, prospects for the second phase of HERA running are discussed.Comment: 13 pages, 15 figures, to appear in Proceedings of the XXI International Symposium on lepton and Photon Interactions at High Energies, Fermilab, August 200
    • …
    corecore