358 research outputs found

    Scaling exponents and clustering coefficients of a growing random network

    Full text link
    The statistical property of a growing scale-free network is studied based on an earlier model proposed by Krapivsky, Rodgers, and Redner [Phys. Rev. Lett. 86, 5401 (2001)], with the additional constraints of forbidden of self-connection and multiple links of the same direction between any two nodes. Scaling exponents in the range of 1-2 are obtained through Monte Carlo simulations and various clustering coefficients are calculated, one of which, CoutC_{\rm out}, is of order 10110^{-1}, indicating the network resembles a small-world. The out-degree distribution has an exponential cut-off for large out-degree.Comment: six pages, including 5 figures, RevTex 4 forma

    Signatures of small-world and scale-free properties in large computer programs

    Full text link
    A large computer program is typically divided into many hundreds or even thousands of smaller units, whose logical connections define a network in a natural way. This network reflects the internal structure of the program, and defines the ``information flow'' within the program. We show that, (1) due to its growth in time this network displays a scale-free feature in that the probability of the number of links at a node obeys a power-law distribution, and (2) as a result of performance optimization of the program the network has a small-world structure. We believe that these features are generic for large computer programs. Our work extends the previous studies on growing networks, which have mostly been for physical networks, to the domain of computer software.Comment: 4 pages, 1 figure, to appear in Phys. Rev.

    Live and Dead Nodes

    Get PDF
    In this paper, we explore the consequences of a distinction between `live' and `dead' network nodes; `live' nodes are able to acquire new links whereas `dead' nodes are static. We develop an analytically soluble growing network model incorporating this distinction and show that it can provide a quantitative description of the empirical network composed of citations and references (in- and out-links) between papers (nodes) in the SPIRES database of scientific papers in high energy physics. We also demonstrate that the death mechanism alone can result in power law degree distributions for the resulting network.Comment: 12 pages, 3 figures. To be published in Computational and Mathematical Organization Theor

    Citation Networks in High Energy Physics

    Full text link
    The citation network constituted by the SPIRES data base is investigated empirically. The probability that a given paper in the SPIRES data base has kk citations is well described by simple power laws, P(k)kαP(k) \propto k^{-\alpha}, with α1.2\alpha \approx 1.2 for kk less than 50 citations and α2.3\alpha \approx 2.3 for 50 or more citations. Two models are presented that both represent the data well, one which generates power laws and one which generates a stretched exponential. It is not possible to discriminate between these models on the present empirical basis. A consideration of citation distribution by subfield shows that the citation patterns of high energy physics form a remarkably homogeneous network. Further, we utilize the knowledge of the citation distributions to demonstrate the extreme improbability that the citation records of selected individuals and institutions have been obtained by a random draw on the resulting distribution.Comment: 9 pages, 6 figures, 2 table

    World-Wide Web scaling exponent from Simon's 1955 model

    Full text link
    Recently, statistical properties of the World-Wide Web have attracted considerable attention when self-similar regimes have been observed in the scaling of its link structure. Here we recall a classical model for general scaling phenomena and argue that it offers an explanation for the World-Wide Web's scaling exponent when combined with a recent measurement of internet growth.Comment: 1 page RevTeX, no figure

    Solution of voter model dynamics on annealed small-world networks

    Full text link
    An analytical study of the behavior of the voter model on the small-world topology is performed. In order to solve the equations for the dynamics, we consider an annealed version of the Watts-Strogatz (WS) network, where long-range connections are randomly chosen at each time step. The resulting dynamics is as rich as on the original WS network. A temporal scale τ\tau separates a quasi-stationary disordered state with coexisting domains from a fully ordered frozen configuration. τ\tau is proportional to the number of nodes in the network, so that the system remains asymptotically disordered in the thermodynamic limit.Comment: 11 pages, 4 figures, published version. Added section with extension to generic number of nearest neighbor

    Coarsening in 2D slabs

    Full text link
    We study coarsening; that is, the zero-temperature limit of Glauber dynamics in the standard Ising model on slabs S_k = Z^2 x {0, ..., k-1} of all thicknesses k \geq 2 (with free and periodic boundary conditions in the third coordinate). We show that with free boundary conditions, for k \geq 3, some sites fixate for large times and some do not, whereas for k=2, all sites fixate. With periodic boundary conditions, for k \geq 4, some sites fixate and others do not, while for k=2 and 3, all sites fixate.Comment: 8 pages, 2 figure
    corecore